
CANCOM2017 - CANADIAN INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS 

 

 

ABSTRACT 

Circular discs have found many engineering applications such as in turbomachinery blisks, automobile disc brakes 

and aircraft turbofan engines. Such thick circular discs have been well studied for their static response. However, to 

investigate the dynamic response, comprehensive research efforts are yet to be made. It is important to study the in-

plane dynamics and out-of-plane dynamics of such circular discs as they play a vital role in causing vibration and 

noise. The present paper presents the three-dimensional in-plane and out-of-plane vibration analysis of linearly-

tapered orthotropic disc of clamped-free boundary condition. A numerical approach based on classical Rayleigh-

Ritz method with finite-element-like modification is developed to calculate the lowest in-plane mode and the lowest 

out-of-plane mode natural frequencies of such thick discs. The analysis is conducted based on the three-dimensional 

elasticity theory and linear strains. The trigonometric functions in circumferential coordinate are employed in all the 

three displacement components in Rayleigh-Ritz method to calculate the natural frequencies.  

 

A detailed parametric study is conducted to study the effect of various system parameters. Numerical and symbolic 

computations are performed using MAPLE and MATLAB. These results are validated using the finite element 

simulation using ANSYS. Design and performance advantages obtained by introducing orthotropy and tapered 

profile are brought out along with the articulation of computational advantages offered by the proposed numerical 

approach. 

1 INTRODUCTION 

The effect of taper on the dynamicbehavior of the circular disc is an important parameter to investigate. Early works 

on analyzing the effect of taper were that of Chandrika Prasad et al. [1] and Gupta and Lal [2], who conducted a 

dynamic analysis of linearly-tapered circular discs and parabolically-tapered circular discs respectively. Soni and 

Amba Rao’s [3] paper contains the analysis for free axisymmetric vibrations of orthotropic circular plates of linear 

thickness variation. Venkatesan and Kunukkasseril [4] studied the free vibration response of layered circular plates 

using shear deformation theory. Recently, Gupta et al. [5] studied the dynamic behavior of fiber reinforced 

composite discs considering SHELL 181 element using ANSYS. Singh and Saxena [6] used the Rayleigh-Ritz 

method to study the axisymmetric transverse vibration of a circular plate of linear thickness variation and made of 

isotropic materials. In their study, radial direction deformation is not accounted for in axisymmetric transverse 

vibration analysis unlike the three-dimensional formulation presented in the present work.  Most previous worksare 

based on two-dimensional analysis. The increasing demand for realistic dynamic analysis of thick structural 

components such as a tapered circular disc in automotive or turbomachinery applications necessitates the 

requirement for development of robust three-dimensional models and their solution procedures. 
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The present paper presents the generalized formulation to investigate the lowest in-plane mode and the lowest out-

of-plane mode natural frequencies of the linearly-tapered disc by using proposed solution technique which employs 

Rayleigh-Ritz method with finite-element-like modification. Three-dimensional in-plane and out-of-plane mode 

vibrations of a linearly-tapered circular disc made of orthotropic materials are investigated. In all the parametric 

studies for the orthotropic disc, a Graphite-Polymer composite material is considered. The material properties of the 

Graphite-Polymer composite material are given in the following Table 1. The clamped-free boundary condition is 

considered in this paper. Effect of linear taper on the lowest circumferential mode and the lowest out-of-plane mode 

natural frequencies is studied. Rayleigh-Ritz solutions are compared with the results calculated using ANSYS. 

 

Material 

properties 

Value Material  

properties 

Value 

𝑬𝟏 155 GPa 𝐺12 4.40 GPa 

𝑬𝟐 12.10 GPa 𝐺13 4.40 GPa 

𝑬𝟑 12.10 GPa 𝐺23 3.20 GPa 

𝒗𝟏𝟐 0.248 𝑣23 0.458 

𝒗𝟏𝟑 0.248 
𝜌𝑜𝑟𝑡ℎ𝑜 = 1800

𝑘𝑔

𝑚3
 

Table 1. Material properties of the orthotropic disc 

The GEnx Commercial Aircraft Engine is used for powering Boeing 747-8 and Boeing 787 Dreamliner. It is the 

bypass turbofan engine of 21st century consisting of carbon-fiber composite fan blades. GEnx-1B engine offers 

advantages in terms of weight and delivers up to 15% better specific fuel consumption than its predecessors. This 

engine has the fan diameter of 111.1 inch and the inner thickness of the blisk is 0.39 m [45]. The following Figure 1 

shows an application of linearly-tapered discs.  

 
 

 

Figure 1. Application of linearly-tapered discs in aerospace industry[7] 
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2 Formulation 

2.1 Modeling 

The above Figure 1 shows one of the applications of thick circular annular discs of clamped-free boundary 

condition. To study the dynamic behavior of a such blade-disc system, called blisk, it can be modeled as a thick 

linearly-tapered disc of clamped-free boundary condition. To accurately predict the in-plane and out-of-plane 

vibration response of such a thick disc, the development of an efficient three-dimensional model is essential.   

 

 

Figure 2. Cross-sectional geometry and coordinate system of the linearly-tapered disc 

Let'sconsider the cross-sectional geometry and coordinate system of the linearly-tapered disc as shown in above 

Figure 2. 𝑅𝑖 and 𝑅𝑜 are the inner radius and the outer radius of circular annular clamped-free disc respectively. ℎ𝑖 
and ℎ𝑜 are the inner thickness and the outer thickness of linearly-tapered disc respectively. 

 

To calculate the total strain energies and kinetic energies for the tapered circular disc, the total energies for the 

uniform-thickness circular disc are derived based on linear strain-displacement relationship. These energies are 

calculated for each infinitesimal mid-segment of each division and integrated uniformly over respective division. 

 

In the presented numerical approach, the domain of tapered disc is divided into subdomains as in the finite element 

method. Further, an approximate solution to the problem for each element is developed over the entire domain of 

tapered disc, not just over each element as in the case of finite element method. Hence, the presented finite-element-

like approach leads to less number of terms in the approximate functions needed to calculate the natural frequencies 

that are closer to the exact solutions compared to finite element method. 

Each trapezoidal division 

 is modeled as an averaged 

 uniform-thickness division 



2.2 Energy formulation 

In polar coordinates, the expression for the strain energy of the uniformly-thick segment of the disc made of the 

orthotropic material is derived from the linear strain-displacement relationship as follows: 
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where subscript N denotes the Nth number of division. Introducing non-dimensional radius and thickness parameters 

asζ =
r

𝑅𝑜
andξ =

h

ℎ𝑜
, the non-dimensional form of Equation (1) is as follows: 
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The kinetic energy of the uniformly-thick segment of the disc in non-dimensional form can be expressed as follows: 

 𝑇𝑜𝑟𝑡ℎ𝑜 =
1
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 (3) 

To calculate the total strain energy and the total kinetic energy of the linearly-tapered disc, the energies for the 

averaged uniform divisions are summed up. Hence, the presented approach leads to less number of divisions to 

calculate the natural frequency compared to finite element analysis. The selection of the number of divisions 

depends on the aspect ratio of the disc.  

 
Considering the circular symmetry of the disc, the free, undamped vibration response is sinusoidal. Hence, 

displacements in 𝑟, 𝜃 and 𝑧 directions are expressed as follows:  

 
 𝑢𝑟 = 𝑈 𝑠𝑖𝑛 𝑛𝜃 𝑠𝑖𝑛𝜔𝑡 (4) 

 𝑢𝜃 = 𝑉 𝑐𝑜𝑠 𝑛𝜃 𝑠𝑖𝑛𝜔𝑡 (5) 

 𝑢𝑧 = 𝑊 𝑠𝑖𝑛𝑛𝜃 𝑠𝑖𝑛𝜔𝑡 (6) 

 
Further, the amplitudes of vibrations in 𝑟, 𝜃  and 𝑧  directions are expressed using the following algebraic 

polynomials, which also satisfy the geometric boundary conditions. 
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𝑄

𝑞=0

𝑃

𝑝=0

ζpξq (9) 

 
where, 𝑛𝑟, 𝑛𝜃 and 𝑛𝑧 are the constraint functions, derived to satisfy the clamped-free boundary condition of the 

tapered disc. These functions are given by 𝑛𝑟 = 𝑛𝜃 = 𝑛𝑧 =
ζ(ζ−β)

(1−β)
 . 

The maximum strain energy and the maximum kinetic energy of linearly-tapered circular disc in circumferential 

mode vibrations are derived by substituting Equations (7), (8) and (9) into Equations (4), (5) and (6) and the 

resultant displacements into Equations (2) and (3). Maximum values of sin2𝜔𝑡  and cos2𝜔𝑡  are considered in 

deriving the maximum strain energy and kinetic energy of the linearly-tapered disc. This way, the maximum strain 

energy of linearly-tapered disc in circumferential mode vibration, is given by 
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The maximum kinetic energy of linearly-tapered disc in circumferential mode vibration, is given by, 
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The maximum strain energy and the maximum kinetic energy in transverse mode vibrations of the linearly-tapered 

disc are as follows: 
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2.3 Solution method 

Rayleigh’s quotient for the linearly-tapered disc is calculated by equating the maximum strain energy and maximum 

kinetic energy of the disc. From Equations (10) and (11), Rayleigh’s quotient for the in-plane circumferential mode 

vibration, is obtained as 
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where, (Ω)𝐿𝑇𝑜 = √
𝜌𝑜𝜔

2

𝐶66
 

Similarly, to calculate the bending mode natural frequency of linearly-tapered disc, Rayleigh’s quotient is calculated 

by comparing the maximum energies in bending mode vibrations, which are expressed by Equations (12) and (13). 
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Rayleigh’s quotient is minimized with respect to the arbitrary coefficients of Equations (7), (8) and (9) to calculate 

the approximate natural frequency of the lowest in-plane mode. Similarly, Rayleigh’s quotient for the bending mode 

vibrations can be calculated and subsequently minimized with respect to the arbitrary constants of Equations (7) and 

(9) to calculate the bending mode natural frequency.  

 

 
𝜕(Ω)2𝐿𝑇
𝜕𝐵𝑘𝑙

= 0 (15) 

 
𝜕𝑁

𝜕𝐵𝑘𝑙
− (Ω)2𝐿𝑇

𝜕𝐷

𝜕𝐵𝑘𝑙
= 0 (16) 

 
It results in eigenvalue problem, which is given below: 

 ([𝐾] − (Ω)2𝐿𝑇[𝑀]){𝐵𝑘𝑙} = {0} (17) 

 
To have a non-trivial solution, let the determinant of the augmented matrix be zero in the above Equation. 

MATLAB code is developed to determine the non-dimensional frequency parameter(Ω)𝐿𝑇. 

3 Results and discussion  

 
The eigenvalue problem is solved by using symbolic and numerical computational programming using MAPLE and 

MATLAB software. Frequency parameters computed using the presented three-dimensional approach are reported 

here. The natural frequency results for the uniform-thickness disc are compared with the results available in the 

literature. The natural frequency results obtained here for the tapered discs are in full agreement with the finite 

element solutions calculated using ANSYS software.  

 

The graphite-polymer composite material is considered. The outer radius of the disc is free and the inner radius of 

the disc is clamped to the hub. The inner thickness and outer radius of the disc are kept constant throughout the 

analysis. The inner radius of thick tapered discs is 0.4 m.  

 

The following Figure 3 shows a variation of the lowest in-plane mode frequency parameter with outer thickness of 

the disc and radius ratio. Lower order polynomial in 𝑟 and 𝑧  is used along with considering 5, 3 and 2 numbers of 

divisions for the orthotropic disc of radius ratio 0.2, 0.25 and 0.3 respectively to calculate the lowest in-plane mode 

frequency.  



 
 

Figure 3. Variation of the lowest in-plane mode natural frequency of linearly-tapered orthotropic disc with respect 

to outer thickness and radius ratio 

 

The natural frequency for the lowest transverse mode of the orthotropic disc is calculated using Rayleigh-Ritz 

method for the beta value of 0.2 and the variation of natural frequency with outer thickness of the disc is noted in 

the following Table 2. For a disc of radius ratio 0.2, lower order polynomial is considered along with six number of 

divisions. With the increase of radius ratio, the frequency parameters increase monotonically for the clamped-free 

linearly-tapered disc. 

 
Outer 

thickness 

(𝒉𝒐in m)  

Taper angle  

(in degrees) 

RR solution 

(𝒇𝟑 in Hz) 

ANSYS 

Solution 

% Difference 

0.39 0.72 583.4589 573.84 -1.68 

0.35 3.58 595.4906 589.29 -1.05 

0.3 7.12 612.5969 611.18 -0.23 

0.25 10.62 632.5566 636.65 0.64 

0.2 14.04 656.1879 666.94 1.61 

Table 2. Variation of natural frequency of the lowest transverse mode with outer thickness of linearly-tapered 

orthotropic disc for beta value of 0.2 

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0.39 0.35 0.3 0.25 0.2

Fr
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u
en

cy
 p
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Outer thickness of linearly-tapered orthotropic disc (in m)

Effect of linear taper on the lowest in-plane mode 

frequency of orthotropic disc

RR solution for beta

value of 0.2

Non-dimensional

frequency parameter

for beta value of 0.2

calculated using

ANSYS

RR solution for beta

value of 0.25

RR solution for beta

value of 0.3
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Outer thickness 

(𝒉𝒐in m) 

Taper angle  

(in degrees) 

RR solution 

(𝒇𝟑 in Hz) 

ANSYS 

solution 

% 

Difference 

0.39 0.76 666.1490 640.57 -3.99 

0.35 3.81 677.2914 658.28 -2.89 

0.3 7.59 693.1765 683.25 -1.45 

0.25 11.31 711.7809 712.13 0.05 

0.2 14.93 733.9158 746.27 1.66 

 

Table 3. Variation of natural frequency of the lowest transverse mode with outer thickness of linearly-tapered 

orthotropic disc for beta value of 0.25 

 

 

Outer  

thickness 

(𝒉𝒐in m)  

Taper angle  

(in degrees) 

RR solution 

(𝒇𝟑 in Hz) 

 ANSYS 

solution 

% 

Difference 

0.39 0.82 739.5735 715.87 -3.31 

0.35 4.09 749.3756 736.27 -1.78 

0.3 8.13 763.3466 764.88 0.20 

0.25 12.09 779.7100 797.73 2.26 

0.2 15.95 800.0 836.31(𝑓4) 4.34 

 

Table 4. Variation of natural frequency of the lowest transverse mode with outer thickness of linearly-tapered 

orthotropic disc for beta value of 0.3 

 

It is shown in above tables that the lowest mode bending parameter which is given by√
𝜌𝑜𝜔2

𝐶55
, increases with taper 

angles. The three-dimensional Rayleigh-Ritz solutions are compared with the ANSYS solutions and a maximum 

5% of the difference is observed. 

4 Conclusions 

In this paper, free vibration analysis of linearly-tapered circular disc of clamped-free boundary condition has been 

conducted. Frequency parameters for the discs made of orthotropic material have been calculated and reported using 

Rayleigh-Ritz method with finite-element-like modification. For the circular tapered disc made of Graphite-

Polymer composite material, the frequency parameters obtained from the presented approach are in good agreement 

(less than 5% difference is noted) when compared with 3-D finite element solutions obtained using ANSYS. A 

summary of observations is as follows: 

 

• An efficient and accurate approximate solution for 3-D vibration response of clamped-free orthotropic discs 

has been developed using Rayleigh-Ritz method. Linear strains are considered for the analysis. The 

presented solution will be useful to check the accuracy of the approximate solutions derived using 2-D 

approach. 

 



• The presented approach allows one to use the lower order polynomials to calculate the lowest in-plane 

mode and the lowest out-of-plane mode natural frequencies for the linearly-tapered clamped-free circular 

disc. Moreover, the freevibration analysis can be conducted using presented formulation for the clamped-

clamped and free-clamped boundary conditions considering appropriate constraint functions in 

displacements polynomials. The free-clamped disc has found application as clamping device (or fixture), 

which holds the machining tool.   

 

• The frequency parameters of the in-plane vibration mode predominantly depend on shear modulus of the 

composite material. 

 

• The frequency parameters for the lowest circumferential mode and the lowest bending mode increase with 

radius ratio. The variation of frequency parameter is higher at higher radius ratios.  

 

• For the considerably-thick linearly-tapered disc, it is observed that the fundamental mode of vibration is the 

circumferential mode. For the thick disc case, the bending stiffness of the structure is higher compared to 

in-plane stiffness.   
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