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ABSTRACT 

This paper describes ability to stress analyze perforated composite members by processing measured thermal or 

displacement information with an Airy stress function in real or complex variables. Displacements are measured using 

digital image correlation whereas an infrared camera records the thermal information. With temperature-related 

information, the hybrid-method converts the recorded thermal data into individual stress components. If processing 

displacement data, the method determines the stresses from a single displacement component without physically 

differentiating measured data. Equilibrium and compatibility conditions are satisfied using real or complex variable 

formulations and analytic continuation. Processing the measured data with a stress function simultaneously smooths 

the recorded information and evaluates the individual stress components, including on the edge of a hole or notch. 

Finite Element and force equilibrium demonstrate reliability of experimental results. 

 

1  INTRODUCTION  

Structures made of composite materials frequently contain holes or notches which produce stress concentrations. 

While stress concentrations themselves might not cause failure, interactions between edge stresses and local material 

strengths can control structural integrity [1,2]. One may also not know a priori where the most serious stresses occurs 

on the edge of a cutout. Pure analytical or theoretical stress analyses are typically only available for simple situations 

having infinite geometries, whereas most practical problems involve complicated, finite shapes. Like numerical 

(FEM, FDM) approaches, analytical/theoretical analyses depend on knowing the external loading. The latter is often 

unknown in practice. Moreover, edge data measured by traditional experimental techniques are not reliable, resulting 

in unreliable edge stresses. Motivated by the above, the ability to stress analyze perforated composite members by 

processing measured temperature or displacement information using an Airy stress function is described. Both real 

and complex variable forms of the stress function are utilized. 

 

Displacements are recorded using digital image correlation (DIC). The hybrid-DIC technique reliably provides the 

three independent stresses from a single measured displacement field. Needing only a single displacement field is 

advantageous as situations occur where there is a paucity or inferior quality of one or other of the in-plane 

displacements. 
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Although classical thermoelastic stress analysis (TSA) provides information on only a linear combination of the 

stresses, engineering applications such as fatigue or failure theories require knowing the magnitudes of the individual 

components of stress so it is necessary to “separate the stresses”. The latter can be determined by combining the 

stress-induced thermal data with some supplementary experimental methods or measured information. Although one 

could combine TSA with some other experimental method (such as photoelasticity, moiré, speckle) to separate the 

stresses, it is preferable to use only a single experimental process The need for other experimental methods or 

information is circumvented here in that the individual stresses are evaluated by hybridizing the recorded thermal 

information with analytical and/or numerical tools (Airy stress function and some known boundary conditions). 

 

The described hybrid techniques simultaneously smooth the measured data, satisfy equilibrium and compatibility, 

and determine individual stresses full-field, including on the edge of holes or notches. This is accomplished without 

knowing the external loading or physically differentiating the measured information.  The latter has its own perils. 

Applications include those to structural aerospace-type and green (manure-cellulosic) composites.  

 

2 EXPERIMENTAL TECHNIQUES 

2.1 Thermoelastic Stress Analysis (TSA) 

By cyclically loading a structure, the stresses at a location are related to the associated stress-induced temperature 

changes. Under orthotropy, the recorded signal, 𝑆∗, is proportional to the change in the linear combination of the 

normal stresses, 𝜎1  and 𝜎2, in the directions of material symmetry, i.e., 

𝑆∗ = Δ(𝐾1𝜎1 + 𝐾2𝜎2) (1) 

𝐾1 and 𝐾2, are traditionally determined experimentally. Recorded TSA data, S*, at, and adjacent to, an edge are 

typically unreliable and raw thermoelastic information in composites is inherently noisy. The present technique 

overcomes these challenges by avoiding the use of recorded data on and near edges and processing the measured 

interior information with an Airy stress function. The resulting TSA-determined stresses are available on and in the 

neighborhood of the edge of a hole or notch without knowing the distant geometry or boundary conditions. 

2.2 Digital Image Correlation 

Digital Image Correlation (DIC) is a full-field computer-based image analysis technique for the non-contact 

measurement of displacements of a surface equipped with a speckle pattern. The method tracks the motion of the 

speckles by comparing the gray scale value at a point (subset) in a deformed and undeformed configuration. Two sets 

of images are recorded; the first image typically being at zero load and the second image under load. The achievable 

DIC resolution depends on a number of factors, including but not limited to, camera resolution, lens optical quality, 

and speckle size and quality. Unlike electronic speckle, DIC necessitates the surface under study to have a random 

speckle pattern for tracking; but unlike therrmoelastic stress analysis, DIC does not require cyclic loading. 

 
Vic-Snap commercial software (by Correlated Solutions, Inc., Columbia, SC, USA,  [3]) was used here to record the 

images of the plate in its loaded and unloaded conditions and to evaluate the displacements for post-processing. Rather 

than using the commercial software to provided strains, the DIC-recorded displacement data were processed using 

the Airy stress function. Quality displacement information at and near the edge of a discontinuity is unavailable 

because the correlation algorithm is unable to track a group of pixels (subset) which lack neighboring pixels.  
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3 RELEVANT EQUATIONS 

The method behind determining the state of stress at and near the geometrical discontinuity lies in coupling the Airy 

stress function, with the measured data and imposing traction-free conditions either analytically or discretely, and 

hence the term hybrid. 

3.1 Real Variable Formulation 

For elasto-static plane problems (plane-stress or plane-strain) in isotropic material with the absence of the body forces, 

the Airy stress function, Φ, which satisfies stress equilibrium and strains compatibility, gives the biharmonic equation 

∇4Φ = 0 where ∇2 is the Laplacian operator and ∇2=
𝜕

𝜕𝑟2 +
1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕

𝜕𝜃2. The general solution to ∇4Φ = 0 in polar 

coordinates is [4] 

Φ = 𝑎0 + 𝑏0 ln 𝑟 + 𝑐0𝑟2 + 𝑑0𝑟2 ln 𝑟 + (𝐴0 + 𝐵0 ln 𝑟 + 𝐶0𝑟2 + 𝐷0𝑟2 ln 𝑟)𝜃

+ (𝑎1𝑟 + 𝑏1𝑟 ln 𝑟 +
𝑐1

𝑟
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(2) 

The individual components of stresses in polar coordinate can be evaluated as 

𝜎𝑟𝑟 =
1

𝑟

𝜕Φ

𝜕𝑟
+

1

𝑟2

𝜕2Φ

𝜕𝜃2
, 𝜎𝜃𝜃 =

𝜕2Φ

𝜕𝑟2
, 𝜎𝑟𝜃 = −

𝜕

𝜕𝑟
(

1

𝑟

𝜕Φ

𝜕𝜃
) (3) 

The radial and circumferential displacements are available using Hooke’s law and integration from individual 

components of stresses. The complete form for stresses and displacements are given in reference [1]. 

 
Determination of individual stresses, strains, or displacements necessitates evaluating the unknown coefficients in 

Airy stress function (typically referred to as Airy coefficients). The specific form of the Airy stress function for a 

particular case can depend on conditions of symmetry, whether or not the coordinate origin is within the component, 

whether the component is finite or infinite in size (boundedness at origin or infinity), self-equilibrated at individual 

boundaries, and single-valued stresses, strains and displacements [1]. 

3.2 Complex Variable Formulation 

For plane problems having rectilinear orthotropy and no body forces, the Airy stress function, ℱ, can be expressed as 

a summation of two arbitrary analytical functions, 𝐹1(𝑧1) and 𝐹2(𝑧2), of the complex variables, 𝑧1 and 𝑧2, as [5–11] 

ℱ = 2𝑅𝑒[𝐹1(𝑧1) + 𝐹2(𝑧2)] (4) 

such that 𝑧𝑗 = 𝑥 + 𝜇𝑗𝑦  for 𝑗 = 1,2 and 𝑅𝑒  denotes the ‘real part’ of a complex number. The complex material 

properties 𝜇1 and 𝜇2 are two distinct roots of the compatibility equation and depend on the constitutive properties 

(𝐸11, 𝐸22, 𝐺12, 𝜈12). The stresses in rectangular coordinates (𝑥, 𝑦) of the physical 𝑧 (= 𝑥 + 𝑖𝑦) plane can be expressed 

in terms of the stress functions. By introducing the new stress functions 

Φ(𝑧1) =
𝑑𝐹1(𝑧1)

𝑑𝑧1
   and       Ψ(𝑧2) =

𝑑𝐹2(𝑧2)

𝑑𝑧2
 (5) 

So one can write the stresses as 



𝜎𝑥𝑥 = 2𝑅𝑒[𝜇1
2Φ′(𝑧1) + 𝜇2

2Ψ′(𝑧2)],     σ𝑦𝑦 = 2𝑅𝑒[Φ′(𝑧1) + Ψ′(𝑧2)],      𝜎𝑥𝑦

= −2𝑅𝑒[𝜇1Φ′(𝑧1) + 𝜇2Ψ′(𝑧2)] 
(6) 

where primes denote differentiation with respect to the argument. The stresses satisfy equilibrium and associated 

strains satisfy compatibility. The displacements can be written in terms of the stress functions as 

u = 2𝑅𝑒[𝑝1Φ(𝑧1) + 𝑝2Ψ(𝑧2)] − 𝑤𝑜𝑦 + 𝑢𝑜, 𝑣 = 2𝑅𝑒[𝑞1Φ(𝑧1) + 𝑞2Ψ(𝑧2)] + 𝑤𝑜𝑦 + 𝑣𝑜 (7) 

where 𝑤𝑜, 𝑢o, and 𝑣o are constants of integration and characterize any rigid body translations (𝑢o and 𝑣o) and rotation 

(𝑤𝑜). The other quantities, which depend on material properties, are 

𝑝1 =
𝜇1

2

𝐸11
−

𝜈12

𝐸11
, 𝑝2 =

𝜇2
2

𝐸11
−

𝜈12

𝐸11
, 𝑞1 = −

𝜈12

𝐸11
𝜇1 +

1

𝐸22𝜇1
, 𝑞2 = −

𝜈12

𝐸11
𝜇2 +

1

𝐸22𝜇2
 (8) 

When the plate is loaded physically in a testing machine, the rigid body motions, 𝑢𝑜, 𝑣𝑜, and 𝑤𝑜 are zero. Plane 

problems of elasticity classically involve determining the stress functions, Φ(𝑧1) and Ψ(𝑧2), throughout a component 

and subject to the boundary conditions around its entire edge. For a region of a component adjacent to a traction free-

edge, Φ(𝑧1) and Ψ(𝑧2) can be related to each other by the conformal mapping and analytic continuation techniques. 

One can the express the stresses in terms of the single stress function, Φ(𝑧1). Moreover, Φ(𝑧1) will be represented 

by a truncated power-series expansion whose unknown complex coefficients are determined experimentally. Once 

Φ(𝑧1) and Ψ(𝑧2) are evaluated, the individual stresses and displacements are known from equations (6). For a 

significantly large region of interest in a finite structure, it may also be necessary to satisfy other boundary conditions 

at discrete locations. 

3.2.1 Conformal Mapping 

Conformal mapping is introduced to simplify the plane problem by mapping the region 𝑅𝑧 of a complicated physical 

𝑧 = 𝑥 + 𝑖𝑦 plane of a loaded physical component into a region 𝑅𝜁 of a simpler shape in the 𝜁 = 𝜉 + 𝑖𝜂 plane. The 

boundary Γ of the physical 𝑧-plane is mapped into the inner boundary Γ𝜁 of the unit circle if one represents the stress 

function as a Laurent series, Figure 1 [1,5–8]. 

 

Figure 1: Mapping a circular cutout in the physcial 𝑧-plane into exteior region of a unit circle in 𝜁-plane. 

Assume that a mapping function of the form 𝑧 = ω(𝜁) exists and which maps 𝑅𝜁 of the simpler plane into 𝑅𝑧 of the 

more complicated physical plane. For orthotropy, the following auxiliary planes and their induced mapping functions 

are defined in terms of 𝜁𝑗 = 𝜉 + 𝜇𝑗𝜂 

𝑧𝑗 = ωj(𝜁𝑗), 𝑗 = 1,2 (9) 

The induced conformal mapping functions are one-to-one and invertible. The stress functions Φ(𝑧1) and Ψ(𝑧2) can 

be expressed as the following analytic functions of 𝜁1 and 𝜁2,  
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Φ(𝑧1) = Φ[ω1(𝜁1)] ≡ Φ(𝜁1), Ψ(𝑧2) = Ψ[ω2(𝜁2)] ≡ Ψ(𝜁2) (10) 
Derivatives of the stress functions with respect to their argument are 

Φ′(𝑧1) = Φ′(𝜁1)
𝑑𝜁1

𝑑𝑧1
=

Φ′(𝜁1)

ω1
′ (𝜁1)

, Ψ′(𝑧2) =
Ψ′(𝜁2)

ω2
′ (𝜁2)

 (11) 

The analyticity of the mapping functions satisfies the equilibrium and compatibility throughout region 𝑅𝑧 of the 

physical plane. 

3.2.2 Traction-free boundaries 

Using the concept of analytic continuation, the individual stress functions for a region 𝑅𝜁 adjacent to a traction-free 

boundary of the unit circle of an orthotropic material are related by [9,10] 

Ψ(𝜁2) = 𝐵Φ(1/𝜁2̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝐶Φ(𝜁2) (12) 

where 𝐵 and 𝐶 are 

𝐵 =
𝜇̅2 − 𝜇̅1

𝜇2 − 𝜇̅2
, 𝐶 =

𝜇̅2 − 𝜇1

𝜇2 − 𝜇̅2
 (13) 

Equation (12) enable the elastic strains and stresses of the structure to be expressed in terms of a single stress function, 

Φ(𝜁1), the latter which can be represented by a Laurent series expansion. 

3.2.3 Mapping Formulation 

For a region adjacent the circular notch of radius 𝑅, the following function [11] 

𝑧𝑗 = ωj(𝜁𝑗) =
𝑅

2
[(1 − 𝑖𝜇𝑗)𝜁𝑗 +

1 + 𝑖𝜇𝑗

𝜁𝑗
] , 𝑗 = 1,2 (14) 

maps the region of the exterior of a unit circle, 𝑅𝜁, of the 𝜁-plane into the region 𝑅𝑧 of the 𝑧-physical plane, Figure 2. 

The inverse of the induced mapping function is 

𝜁𝑗 = ωj
−1(𝑧j) =

𝑧𝑗 ± √𝑧𝑗
2 − 𝑅2(1 + 𝜇𝑗

2)

𝑅(1 − 𝑖𝜇𝑗)
, 𝑗 = 1,2 

(15) 

The branch of the square root in equation (15) is chosen such that |𝜁𝑗| ≥ 1 for 𝑗 = 1,2. The mapping function for 

elliptical cutout is given in reference [12].  

3.2.4 Mapping Collocation, Stresses and Displacements 

The single stress function can be expresses as the following finite Laurent series [1] 

Φ(𝜁1) = ∑ 𝐴𝑗ζ1
𝑗

𝑁

𝑗=−𝑁
𝑗≠0

 (16) 

where 𝐴𝑗 = 𝑎𝑗 + 𝑖𝑏𝑗  are the unknown complex coefficients (𝑎𝑗  and 𝑏𝑗  are both real numbers). The 𝑗 = 0  term 

contributes to rigid-body motion and can be omitted. The stress function can also be represented by Taylor series [1]. 

Substituting equation (16) into (12) yields 

Ψ(𝜁2) = ∑ (𝐴̅𝑗𝐵𝜁2
−𝑗

+ 𝐴𝑗𝐶𝜁2
𝑗
)

𝑁

𝑗=−𝑁
𝑗≠0

 (17) 



where 𝐴̅𝑗 is the complex conjugate of 𝐴𝑗. At least for a finite, simply connected region 𝑅𝜁, Φ(𝜁1) is a single-valued 

analytic function. Orthotropic composite whose complex parameters are purely imaginary when the directions of 

material symmetry are parallel and perpendicular to the applied load require retaining only odd terms in the Laurent 

expansions. Upon combining equations (6), (11), (16), and (17) the individual stresses become 

𝜎𝑥𝑥 = 2 ∑ 𝑅𝑒 {𝑗 [
𝜇1

2𝜁1
𝑗−1

ω1
′ (𝜁1)

+
𝐶𝜇2

2𝜁2
𝑗−1

ω2
′ (𝜁2)

] 𝐴𝑗 − 𝑗𝜇2
2𝐵 [

𝜁2
−𝑗−1

ω2
′ (𝜁2)

] 𝐴̅𝑗}

𝑁

𝑗=−𝑁,…
𝑗≠0

 (18) 

𝜎𝑦𝑦 = 2 ∑ 𝑅𝑒 {𝑗 [
𝜁1

𝑗−1

ω1
′ (𝜁1)

+
𝐶𝜁2

𝑗−1

ω2
′ (𝜁2)

] 𝐴𝑗 − 𝑗𝐵 [
𝜁2

−𝑗−1

ω2
′ (𝜁2)

] 𝐴̅𝑗}

𝑁

𝑗=−𝑁,…
𝑗≠0

 (19) 

𝜎𝑥𝑦 = −2 ∑ 𝑅𝑒 {𝑗 [
𝜇1𝜁1

𝑗−1

ω1
′ (𝜁1)

+
𝐶𝜇2𝜁2

𝑗−1

ω2
′ (𝜁2)

] 𝐴𝑗 − 𝑗𝜇2𝐵 [
𝜁2

−𝑗−1

ω2
′ (𝜁2)

] 𝐴̅𝑗}

𝑁

𝑗=−𝑁,…
𝑗≠0

 (20) 

From equations (7), the displacements can be written as 

𝑢 = 2 ∑ 𝑅𝑒{[𝑝1𝜁1
𝑗 + 𝑝2𝐶𝜁2

𝑗]𝐴𝑗 + 𝑝2𝐵𝜁2
−𝑗𝐴̅𝑗}

𝑁

𝑗=−𝑁,…
𝑗≠0

 (21) 

𝑣 = 2 ∑ 𝑅𝑒{[𝑞1𝜁1
𝑗 + 𝑞2𝐶𝜁2

𝑗]𝐴𝑗 + 𝑞2𝐵𝜁2
−𝑗𝐴̅𝑗}

𝑁

𝑗=−𝑁,…
𝑗≠0

 (22) 

Choosing the 𝑦 −axis parallel to the strongest, stiff orientation of the composite, Fig. 1, i.e., 1-direction of an 

orthotropic composite material, and introducing the Laurent series according to equation (1), the thermoelastic data 

𝑆∗ becomes 

𝑆∗ = 𝐾1𝜎𝑦𝑦 + 𝐾2𝜎𝑥𝑥

= 2 ∑ 𝑅𝑒 {[
𝑗(𝐾1 + 𝐾2𝜇1

2)

ω1
′ (𝜁1)

𝜁1
𝑗−1 +

𝑗(𝐾1 + 𝐾2𝜇2
2)𝐶

ω2
′ (𝜁2)

𝜁2
𝑗−1] 𝐴𝑗

𝑁

𝑗=−𝑁,…
𝑗≠0

− [
𝑗(𝐾1 + 𝐾2𝜇2

2)𝐵

ω2
′ (𝜁2)

𝜁2
−𝑗−1] 𝐴̅𝑗} 

(23) 

 

 

The only unknowns in these expressions for the stresses and displacements are the complex coefficients 𝐴𝑗 = 𝑎𝑗 +

𝑖𝑏𝑗, the other quantities involve geometry (location) or material properties. These coefficients can be determined from 

measured displacement or temperature data. Using conformal mapping and analytic continuation techniques, 

equations (18) through (20) imply that the stresses satisfy equilibrium and traction-free conditions along the adjacent 

portion of the entire boundary. However, unlike a classical boundary-value problem where one would typically 

evaluate the unknown coefficients, 𝐴𝑗, by satisfying the boundary and loading conditions around the entire shape, one 

can use a combination of the measured stresses of equations (18) through (20) and/or displacements of equations (21) 

and (22) from within region 𝑅𝑧 to determine these unknown complex coefficients, 𝐴𝑗. One can also impose additional 

known boundary conditions at discrete locations. The concept of collecting measured data in a region 𝑅∗ adjacent to 

an edge 𝛤, mapping 𝑅𝑧  into 𝑅𝜁  such that 𝛤 of the physical 𝑧-plane is mapped into the unit circle in the 𝜁-plane 
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whereby the traction-free conditions on 𝛤 are satisfied continuously, relating the two complex stress functions to each 

other, plus satisfying other loading conditions discretely on the boundary of the component beyond 𝛤 will be referred 

to as the mapping-collocation technique. 

 

The non-boundary values of displacement 𝑢∗ or 𝑣∗ or temperature information 𝑆∗ at 𝑚 different locations within 

region 𝑅∗ and 𝑞 known stress conditions at discrete points are employed. A system of simultaneous linear equations 
[𝐴](𝑚+𝑞)×4N{𝑐}4N×1 = {𝐴∗}(𝑚+𝑞)×1, is formed whose matrix [𝐴] consists of analytical expressions 𝑓𝑜𝑟 𝑢∗ or 𝑣∗or 

𝑆∗and the those of the known stress conditions, vector {𝑐} = {𝑎−𝑁, 𝑏−𝑁, 𝑎−𝑁+1, 𝑏−𝑁+1, … , 𝑎𝑁−1, 𝑏𝑁−1, 𝑎𝑁 , 𝑏𝑁} has 

4𝑁 unknown real coefficients, and vector {𝐴∗} includes the 𝑚 measured displacement values or TSA signal 𝑆∗ and 𝑞 

discretely imposed stress conditions such that 𝑚 + 𝑞 ≫ 4𝑁. The best values of the coefficients 𝐴𝑗  can then be 

determined in a least-squares numerical sense.   The variables 𝜁𝑗 = 𝜉 + 𝜇𝑗𝜂, in equations (18) through (22) are related 

to the physical locations 𝑧 = 𝑥 + 𝑖𝑦 through the inverse mapping function 𝑧𝑗 = ω𝑗(𝜁𝑗) of equation (14) through (15). 

The individual stresses then are known throughout the region, 𝑅𝑧 , including on the traction-free edge 𝛤  from 

equations (18) through (20). The number of terms, 𝑁, to retain in the stress function is typically selected by evaluating 

the difference between the magnitude of experimentally based data and those predicted according to the present hybrid 

method by using root mean square approach. 

 

4 EXAMPLES  

Recognizing the general inability to analyze orthotropic materials using real variables, several stress analyses of 

orthotropic composites have utilized an Airy stress function in complex variables and conformal mapping. Lin and 

Rowlands [13] analyzed a notched orthotropic laminated plate thermoelastically, Hawong et. al. [14] combined 

measured isochromatic information and a complex stress function to study the stresses in a circularly-perforated 

composite whereas Rhee and Rowlands [15] thermoelasticaly determined the edge stresses of a circular hole and the 

stress intensity factors in a composite having a crack. Baek and Rowlands used conformal mapping with moiré [16] 

and strain gage data [17] to determine the full-field stress around a circular hole in composite plate. Ju and Rowlands 

[18,19] determined stress intensity factors thermoelastically for inclined cracks in an orthotropic composite. All of 

these prior applications of the mapping technique either separated stresses from recorded isopachic or isochromatic 

information or evaluated the stresses using two components of displacement whereas the present displacement-based 

approaches  utilize only one recorded displacement component to evaluates all the stresses. 

4.1 Thermoelastic Stress Analysis  

The full-field stresses in loaded, perforated cellulosic-manure composites from recorded temperature information was 

determined using the Airy stress in the real variable, equation (2), and imposing traction-free conditions, 𝜎𝑟𝑟 = 𝜎𝑟𝜃 =
0 on the boundary of the hole, Figure 2 [20]. Being able to stress analyze such green materials addresses several 

societal issues; include providing engineering members fabricated from materials which are suitable for developed 

and developing nations, relieving a troubling by-product of agricultural regions and reducing demands on our landfills. 

Alshaya et al. [21] employed recorded temperature data, 𝑆∗, to stress analyzed a finite graphite/epoxy laminated 

orthotropic composite containing an elliptical hole using mapping collocation technique as shown in Figure 3. 

 



    
                              (a)                     (b) 𝜎𝜃𝜃/𝜎0 

Figure 2: (a) TSA recorded signals in cellulosic-manure composite and (b) Contour plot of 𝜎θθ/𝜎0 throughout the region 

adjacent to the circular hole by hybrid-TSA; 𝑚 = 10,000 and 7 Airy coefficients [20]. 

 

  
                              (a)                      (b) 𝜎𝑦𝑦/𝜎0 

Figure 3: (a) Thermoelastic data, S*, as averaged throughout the four quadrants (load range = 7.12 kN) in graphite-epoxy 

composite and (b) Contour plot of 𝜎yy/𝜎0 throughout the region adjacent to the elliptical hole by FEA (right) and hybrid-TSA; 

𝑚 = 2,558 and 8 real coefficients (right) [21]. 

4.2 Digital Image Correlation 

A finite graphite/epoxy laminated composite plate containing symmetrically-located sided-notches and vertically 

loaded in the strongest/stiffest material direction is analyzed, Figure 4 [22]. The DIC-recorded displacement data 

employed are those in the loading direction. Stresses at and in the vicinity of the edge of a side notch are illustrated 

in Figure 4(b). Reference [23] provides further information regarding employing different amounts and source 

locations of measured displacements and varying number of coefficients, as well as how displacements are 

differentiated to provide strains. Figure 5 shows the DIC-determined stresses around a hole in a loaded graphite/epoxy 

laminate from only measured vertical displacement information [24]. 
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(a)                     (b) 𝜎𝜃𝜃/𝜎0 

Figure 4: (a) DIC recorded 𝑣-displacement in graphite-epoxy composite and (b) Contour plot of 𝜎θθ/𝜎0 throughout the region 

adjacent to the notch by FEA (right) and hybrid-DIC; 𝑚 = 2,200, 𝑞 = 24 and 12 real coefficients (left) [22]. 

   
                                        (a)                     (b) 𝜎𝑥𝑥/𝜎0 

Figure 5: (a) DIC recorded 𝑣-displacement data in graphite-epoxy composite and (b) Contour plot of 𝜎xx/𝜎0 throughout the 

region adjacent to the hole by FEA (left) and hybrid-DIC; 𝑚 = 6,448, 𝑞 = 10,803 and 4 real coefficients (right) [23]. 

 

5 SUMMARY AND CONCLUSIONS 

The successful ability to stress analyze perforated composite members by processing measured thermal or 

displacement information using an Airy stress function is described.  
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