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ABSTRACT 
A set of tools were developed with the aim of facilitating the design and qualification of 3D woven composite 
materials. Specifically, software tools facilitating the recovery of multi-scale structures from computer tomography 
(CT) scans have been developed with the aim of generating suitable inputs into finite element analysis (FEA) 
solvers and ground truth for computational preform geometry generation models. 
 
While it is currently easy to recover volume fractions from a CT scan voxel array, a means of recovering fibre 
orientations within the reconstructed image is lacking to properly characterize the anisotropic properties of fibre 
reinforced composites. Following existing research in the recovery of anisotropy data from micrographs using 2D 
Fast Fourier Transforms (FFT), a generalization in 3D is presented in this paper, similar in theme to Principal 
Component Analysis. The method consists of calculating the multivariate covariance matrix of the 3D FFT of the 
CT scan sample. Boundary effects were mitigated by applying isotropic multivariate Gaussian and radial Heaviside 
window functions in the spatial and spectral domains, respectively. Strategies to mitigate the effects of noise are 
also presented. Average fibre orientations are thereby recovered from the raw voxel representation of the CT scan.  
 
As case studies, the method is applied to a range of simulated data, and then finally to a scan of an infused 3D 
woven fibre reinforced composite, proving the suitability of the method for NDT and materials characterization and 
as a useful tool in computational model validation. 
 

1 INTRODUCTION  
The ability to recover the principal axes of orthotropy from CT scans has many applications, especially in the field 
of composites. The highly orthotropic material properties of fibre reinforced composites are a result of preferential 
orientations of their constituent fibres. As such, to properly qualify such materials, not only must a local fibre 
volume fraction be ascertained, but a measure of the mean orientation and degree of alignment of the fibres is also 
critical. An impartial analysis of parts for quality assurance or model validation therefore calls for a means of 
evaluating these quantities. 
 
 An exact measurement of material orthotropy can be tricky even for simple preform architectures such as laminates 
consisting of unidirectional plies, and the difficulty is compounded in the case of 3D woven composites, which are 
intricate and highly variable throughout their thickness. To start, obtaining the input data typically involves some 
form non-destructive testing. Of course, for parts where the orientations vary throughout the thickness, 3D scans are 
needed. As such 3D NDT methods are typically employed such as x-ray Computer Tomography (CT) or ultrasound. 
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Following some post-processing, these methods yield a voxel array representing the mean sampled image response 
of the material for the given imaging technique. This response is then correlated to a mean volume fraction for each 
voxel. This may be sufficient in a gross quality control or damage assessment application. For a more in-depth 
analysis, the traditional workflow then involves the generation of isosurfaces representing general features such as 
yarns or layers from these opacities. Finite element meshes could then manually be created and populated with 
orientation data and estimations to predict the material’s behaviour. 
 
The steady improvement of CT scan resolutions and computer power presents attractive opportunities to supplement 
or replace these last manual steps. Notably, it is now practical to generate CT scans capturing individual carbon or 
glass fibres for small parts such as test coupons and to evaluate their micro-scale properties through the application 
of high resolution finite element models. Without recovering the local fibre orientations, however, such simulations 
must assume the constituents behave isotropically – an assumption which may hold for glass fibres, but not for 
carbon fibres, for instance. Furthermore, the acquisition and analysis of such dense data over anything much larger 
than a small test coupon is impossible or at least impractical. For the purpose of inline quality assurance, damage 
and repair analysis and in order to facilitate the creation of efficient multi-scale finite element meshes, a means of 
recovering fibre orientations and generating an interpolation scheme would be a boon. Thus, such an approach is 
being developed and the current progress is outlined in this paper. 
 

2 METHODOLOGY 

2.1 Overview 
Current state of the art CT scan analysis software packages such as Synopsys Simpleware and Brucker Skyscan 
reconstruction software offer a means to generate average volume fraction voxel data or isocontour meshes. Though 
these methods present a useful starting point towards conformal mesh generation for FEA, a means of generating 
the complementary fibre orientation vector field is also needed. Indeed, Skyscan replicates the desired results 
through the use of a Mean Intercept Length (MIL) algorithm [2], and Synopsis’ Simpleware package goes some 
way towards achieving this through the use of “principal coordinate axes” [1]. However, the former approach 
requires several expensive ray-casting operations and may not return accurate results is the objects are too few or 
too small, and the latter approach is not laid out in detail, so little can be said about its efficacy. This paper will 
therefore focus on developing a FFT-based material orthotropy measure not unlike MIL in some respects, but which 
is fast, robust and requires little or no human intervention. 
 
The recovery of anisotropy data from micrographs is subject of ongoing research in the fields of metallurgy to 
quantify grain microstructure, as was presented by Holota and Němeček [3], and further applied to nonwoven 
fibrous materials by Jeddi et al [4]. Both approaches examine histogram data of the 2D Fast Fourier Transform 
(FFT) of the original micrographs and recover a measure of angle and magnitude of the anisotropy of the examined 
structure. An extension of this method to 3D is presented which aims to robustly generate mean orientation vectors 
as sampled over an arbitrary unstructured grid within a CT scan voxel array whereby the Principal Component 
Analysis (PCA) of the FFT spectrum of a local windowed sample effectively determines the best fit for orthotropic 
axes, as well as to quantify the degree of orthotropy along each axis. 
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2.2 Fast Fourier Transform and Image Processing 
The Fast Fourier Transform algorithm recovers the complex Fourier coefficients defined in the frequency domain 
from a set of uniformly spaced samples in the spatial domain. These frequencies and amplitudes are encoded as a 
set of complex coefficients: 

𝐹(k) = FFT[𝑘](𝑓) ≡ � f𝑛e−2 𝜋 𝑖 𝑘 𝑛 / 𝑁
𝑁−1

𝑛=0

 

(1) 

where 𝐹(𝑘) is the 𝑘th complex Fourier coefficient of the sampled series f and 𝑁 represents the number of samples. 
This transform readily generalises to d-dimensions: 

𝐹(𝐤) = FFT[𝒌](𝑓) ≡ � f𝒏e−2 𝜋 𝑖  𝒏 ∙𝒌 / 𝑵
𝑵−1

𝒏=𝟎

 

(2) 

where bolded terms represent d-dimensional vectors and the division 𝒌 / 𝑵 is defined as: 
(
𝑛1
𝑁1

,
𝑛2
𝑁2

, … ,
𝑛𝑑
𝑁𝑑

) 

for 𝑑-dimensions. The magnitude of each coefficient in the spectrum represents the amplitude of the sinusoid at a 
given frequency, whereas the complex argument represents its phase. 
 
An intuitive description of how FFT can be used to recover material orthotropy axes can be constructed as follows. 
As per the MIL algorithm, if on average several fluctuations occur in the amplitude of an orthotropic scalar field 
along a given path, then this path is likely along a more transverse direction. Conversely, should very few 
fluctuations occur along a given path, then this path coincides with a longitudinal direction. One should therefore 
see large spectral amplitudes even into the high frequencies along the transverse direction owing to the repeated 
fibre crossings, and a very compact spectral distribution in the longitudinal direction as the amplitudes stays mostly 
constant. This effect is illustrated for 2 dimensions in Figure 1, with the calculated principal components overlaid. 
 

   
Figure 1a) 2D simulacrum of fibres, and; b) its convoluted FFT with central coefficients masked, 
both with superimposed orthogonal vectors following the full treatment described in this section 

 



Few fibres are crossed in the longitudinal direction denoted by the long arrow, resulting in a very narrow spectrum 
distribution in the spectral domain. Conversely, several fibres are crossed in the transverse direction, resulting in a 
wide spectrum distribution in that direction. 
 
To obtain the principal fibre directions at chosen sampling points, each sampled neighbourhood is first multiplied 
by a convolution kernel corresponding to a radially symmetric Gaussian: 

𝒩(𝝃;  𝐶0) = exp (−
1
2
𝝃𝑇𝐶0−1 𝝃) 

(3) 

where 𝐶0 is the covariance matrix, in this case corresponding to the identity matrix multiplied by a scalar variance 
(or inverse falloff) parameter 𝑠, and 𝝃 represents some distance offset from the sampling neighbourhood centre. The 
kernel is shown for the 2D case in Figure 2. 
 

 
Figure 2: Gaussian kernel 

 
From the FFT convolution property, this initial operation ensures that spurious high frequency noise is removed 
(this multiplication corresponds to a Gaussian blur in the spectral domain). More importantly the application of a 
radial convolution kernel mitigates the edge and corner effects on the angular reconstruction, as the Gaussian kernel 
approaches zero away from its centre. The variance and size of the kernel (its falloff and support) can be adjusted to 
result in more or less noise reduction with a tradeoff on minimum detail resolution. 
 

𝐹(𝐤) =  FFT[𝒌](𝒩(𝝃 −  𝒙𝒏)  ∙ 𝑓(𝒙𝒏)) 
(4) 

The result of the ensuing FFT resembles that shown in Figure 1b) for a given sampling neighbourhood. In the 3D 
case, the magnitude of the Fourier spectrum for a mostly unidirectional anisotropic scalar field resembles a flat disc 
whose normal is oriented along the principal fibre direction. The low magnitude components below some threshold 
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value can be discarded, yielding a series of high magnitude coefficients and their corresponding coordinates in the 
frequency domain. To determine the primary axes describing their distribution and magnitude, these points and 
weights are then fed into the principal component analysis. 
 

2.3 Principal Component Analysis 
 
PCA is a method or recovering the underlying orthogonal basis set of a set of punctual observations. This powerful 
analysis technique has applications in statistics and in machine learning, but its use in CT scan analysis will be 
made clear as follows: a geometric interpretation of PCA consists of fitting an n-ellipsoid to the data. In the case of 
normally distributed data, the PCA recovers the orthogonal singular vectors of the covariance matrix describing that 
distribution. 
 
The technique involves calculating the estimated covariance of a set of samples (in this case the truncated subset of 
spectral coordinates weighted by their corresponding set of Fourier coefficient magnitudes): 

C = � (𝒌𝑚 −  µ)
𝑀−1

𝑚=𝟎

 (𝒌𝑚 −  µ)T
‖𝐹(𝐤𝑚)‖
∑‖𝐹(𝐤𝑚)‖

 

(5) 

where  𝒌𝑛  represents the 𝑛-th sampled spectral coordinate ‖𝐹(𝐤𝑚)‖ represents complex magnitude of the 𝑚-th 
corresponding Fourier coefficient acting as a weight, ∑‖𝐹(𝐤𝑚)‖ is the sum of all these Fourier magnitudes and µ 
represents the mean of these coordinates weighted by their Fourier coefficients: 
 

µ = �𝒌𝑛
‖𝐹(𝐤𝑚)‖
∑‖𝐹(𝐤𝑚)‖

𝑀−1

𝒎=0

 

(6) 

As the 𝑑 ×  𝑑 covariance matrix recovered from the d-dimensional weighted sample set, C encodes the orthogonal 
basis of the distribution. To extract that information, it is necessary to apply an eigendecomposition, or equivalently 
a Singular Value Decomposition (SVD): 

C = U S V𝑇  
(7) 

where, since C is square, U is a 𝑑 ×  𝑑 matrix containing 𝑑 orthogonal left-singular column vectors, and similarly V 
is a 𝑑 ×  𝑑 matrix containing 𝑑 orthogonal right-singular row vectors. S is a diagonal matrix containing 𝑑 singular 
(or Eigen) values.  
 
Specifically, the singular vector corresponding to the smallest singular value corresponds to the prevailing fibre 
direction. Vectors corresponding the second and third (and so on for higher dimensions) are aligned along the 
remaining prevailing orthogonal directions, in order of relative scaling. The ratio of the largest singular value to the 
smallest singular value of the covariance SVD, also known as its condition number is a measure of the degree of 
anisotropy.  
 



2.4 Derivatives 
Optionally chain rule derivatives can be calculated at each step in order to feed the result forward into gradient-
based optimizers such that the position of interpolation nodes can be optimized to the most anisotropic regions, for 
instance. In this section. a subscript preceded by a comma (e.g. 𝑎,𝑏) represents a derivative with regards to the 
subscript. 
 
In order, the gradient of the FFT of the product of the convolution kernel and the sampled neighbourhood with 
regards to its centre can be simplified by precomputing a gradient convolution kernel: 
 

𝒩,𝝃(𝒙;  𝝃, 𝑠) =  2(𝒙 −  𝝃)�𝐶0 +  𝐶0T�
−1𝒩(𝒙;  𝝃, 𝑠) 

(8) 

 A visualisation of the gradient convolution kernel along 𝜉0 (the vertical direction) is shown in Figure 3.  
 

 
Figure 3: Gaussian gradient kernel along the vertical direction 

 
These gradient kernels can be applied in the same manner as the Gaussian kernel prior to the FFT to yield the 
gradient of the transform with regards to analysis region placement.: 

𝐹(𝒌) =  FFT[𝒌](𝒩 ∙ 𝑓),𝝃 = FFT[𝒌](𝒩),𝝃 ∗  FFT[𝒌](𝑓)  = FFT[𝒌](𝒩,𝝃  ∙ 𝑓) 

(9) 

The gradient of a complex magnitude corresponds to : 
‖𝐹(𝐤𝑚)‖,𝐹(𝐤𝑚) = sgn�𝐹(𝐤𝑚)� 𝐹(𝐤𝑚),𝐤𝑚 

(10) 

Next, the weighted mean’s derivative with regards to the Fourier coefficient complex magnitude: 
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µ,‖𝐹(𝐤𝑚)‖ =
𝒌 −  µ
𝑀 − 1

  

(11) 

Using the derivative of the mean w.r.t. a given Fourier coefficient complex magnitude, the derivative of the 
covariance w.r.t. that magnitude can be expressed as: 
 

C,‖𝐹(𝐤𝑚)‖  =  (𝒌𝑚 −  µ)(𝒌𝑚 −  µ)T
1

∑‖𝐹(𝐤𝑚)‖
−��µ,‖𝐹(𝐤𝑚)‖�

𝑃−1

𝑝=𝟎

 �𝒌𝑝 −  µ�T +  �𝒌𝑝 −  µ��µ,‖𝐹(𝐤𝑚)‖�
T  

�𝐹(𝐤𝑝)�
∑�𝐹(𝐤𝑝)�

 

(12) 

Finally, the derivative of each component of the SVD (the left singular vectors, the singular values and the right 
singular vectors) is described in [5]. 
 
 
All of these quantities and their gradients were coded in python using the numpy/scipy libraries and tested using 
finite difference to ensure stability. 
 

3 Results  
As a first trial of the recovery capabilities of the subroutines, a synthetic dataset of 100 voxels cubed was generated 
consisting of a completely orthotropic quadratically distributed noise source random in two directions and constant 
along the third. Unsurprisingly, the software was able to determine the principal orientations to within machine 
epsilon. 
 
The trial was incremented by rotating the extruded noise source along some arbitrary vector. Again, the software is 
able to recover the orientations to within a few degrees, limited it seems by the aliasing caused by the rotation 
operation and by the Nyquist limit on interpolation and Fourier Transform. Isotropic noise was then progressively 
added until it accounted for 93.75% of the input signal, with little effect on the accuracy of the PCA, likely due to 
the noise correcting properties of the Gaussian convolution kernel and the wide support. The condition number 
indicating the degree of orthotropy dropped, intimating that the samples were more isotropic, which is to be 
expected since, again, the added noise was uniform. 100 trials were conducted for each noise level to iron out 
inconsistencies. Figure 4 shows the effect of noise on the angular error and condition number. 



 
Figure 4 Average angular error and condition number w.r.t. isotropic noise 

 
 
The final and ongoing testing consists of extracting fibre orientation from actual CT scans. Figure 5 shows 
a subset of a 3D orthogonal weave vector field where the length and colourscale of the vectors 
corresponds to the degree of orthotropy, and their directions correspond to the principal orientation of the 
vectors. As might be intimated by this figure, current difficulties specifically include dataset visualization 
and validation, as well as computational efficiency working with extremely large voxel arrays. Indeed full 
scale high resolution reconstructions can take several hours on a relatively high performance consumer 
PC. Some sample placement optimization testing is also ongoing, but it was discovered that with the 
orientation gradients being as highly sensitive to small changes in node placement, the optimizer tends to 
fall into local minima, or take a very long time indeed to converge. 
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Figure 5 Reconstructed fibre orientation vector field of an orthogonal 3D woven composite section 

 

4 ONGOING WORK 
The next steps in this programme consist of refining the CT scan reconstruction algorithm to allow it to 
better handle large datasets, to implement more efficient visualization tools, and to integrate it with a FEA 
solver. It is hoped that the ability to generate efficient conformal meshes will integrate well with 
isogeometric and harmonic basis function elements currently being developed in parallel. 
 
As it stands, the means to robustly and automatically isolate a measure of fibre orthotropy over an 
arbitrary region shows great promise for the modelling, validation and quality assurance of fibre 
reinforced composites. 
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