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ABSTRACT 

Microfiber-reinforced polymer composites reinforced with carbon nanotubes (CNTs), known as ‘‘multiscale” 

composites are a new generation of advanced composite materials and have received significant attention in the 

field of advanced, high-performance materials. In the present study, we numerically investigated the effects of 

CNTs on the stiffness properties of fiber-reinforced multiscale composite beams of general cross-sectional shapes 

and arbitrary anisotropic material properties. The three dimensional strain field was formulated in terms of one-

dimensional strains and a three-dimensional warping displacement. The bulk material properties of the multiscale 

composite were predicted using the Halpin–Tsai equations and fiber micromechanics. The carbon nanotubes were 

assumed to be uniformly distributed and randomly oriented throughout the polymer matrix. The Variational 

Asymptotic Beam Section (VABS) method was used to numerically evaluate the stiffness and mass matrices of 

four test cases: strip, circular pipe, box beam and airfoil. Through a detailed parametric study, it was determined 

that inclusion of a small weight percentage of carbon nanotubes in the polymer matrix may be sufficient to 

significantly enhance the stiffness properties of fiber-reinforced composites. 

1  INTRODUCTION  

During the past decade, there has been a phenomenal growth in research activities to develop a methodology to 

analyze composite tailored beams and blades. Composite blades are, in general, built-up structures made of 

different materials. They are three dimensional (3D) bodies in which one dimension is large compared to the other 

two. This enables the separation of the 3D problem into two parts: a 2D local deformation field within the cross-

section that is used to calculate the section properties, and a 1D global deformation field that is used to calculate 

the response of the beam [1]. The cross-sectional properties can be obtained using either ad hoc assumptions (e.g. 

[2]–[4]) or asymptotic methods (e.g. [1], [5]–[7]). In general, a fully populated matrix of cross-sectional stiffness 

properties is expected [8]. Analytical analyses are available for simple geometries; however, arbitrary cross-

sections require numerical solutions such as finite element analysis (FEA). One of the most common FEA-based 

tools is the Variational Asymptotic Beam Section (VABS) [9]–[11]. The mathematical basis of VABS is the 

variational asymptotic method (VAM). VAM allows one to replace a three-dimensional structural model with a 

reduced-order model in terms of an asymptotic series of certain small parameters inherent to the structure [5]. 

Based on this method, Hodges and his coworkers developed theoretical foundations for the analysis of anisotropic 

composite beams [7]–[9], [12]–[14]. Many researchers extended the research done by Hodges [7], [15] to study 

the statics and dynamics of composite beams. For instance, Traugott et al. [16] developed a set of nonlinear, 

intrinsic equations describing the dynamics of beam structures undergoing large deformations of active helicopters 

blade. Their active structural model could be coupled with a suitable aerodynamic model for aeroelastic simulation 
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and aeroelastic control design. Ghorashi and Nitzsche [17] studied the nonlinear dynamic response of an 

accelerating composite rotor blade using perturbations. In another study, Ghorashi [18] also investigated the 

elasto-dynamic response of a rotating articulated blade. He used the linear VAM cross-sectional analysis, together 

with an improved damped nonlinear model for the rigid-body motion analysis of helicopter blades in coupled flap 

and lead-lag motions. Recently, Rafiee et al. [1] presented a computational model to investigate the static and 

vibration response of rotating and non-rotating nanocomposite beams and blades based on VAM.  

Multiscale composites containing reinforcing elements at different length scales (i.e. macro, micro and/or nano) 

are a class of innovative and high-performance materials with a wide range of applications in the high-end 

industrial sectors [1], [19]. To date, multiscale composites have been developed using different types of 

nanomaterials. The most common are the nanomaterials with high aspect ratios such as nanotubes. Based on the 

Halpin–Tsai equations and fiber micromechanics, Rafiee et al. [1] investigated the statics and dynamics of carbon 

nanotubes reinforced composite cantilever beams. The large amplitude vibration of rectangular cross-section 

beams made of multiscale composites was also studied by He et al. [20]. 

To the best of authors’ knowledge, there are presently no theoretical developments for the comprehensive cross-

sectional analysis of multiscale composite blades. The beam cross-sectional analysis presented here investigates 

the effectiveness of CNTs reinforcements on the stiffness properties of beams and blades made of multiscale 

composite materials. The Halpin–Tsai equations and fiber micromechanics were used in hierarchy to predict the 

bulk material properties of the multiscale composite. The CNTs were assumed to be uniformly distributed and 

randomly oriented through the epoxy resin matrix. We used the VABS approach for numerical calculation of mass 

and stiffness matrices for four different cross sections: strip, circular pipe, box beam and airfoil. The volume 

fraction of fibers, the weight percentage of single-walled and multi-walled carbon nanotubes (SWCNTs and 

MWCNTs) were investigated through a detailed parametric study for their effects on the stiffness properties of 

composite beams and blades. 

 

2 MATHEMATICAL MODELING 

2.1 Material model 

2.1.1 Strain energy 

Under the condition of small local rotation, the three-dimensional strain field ij  can be expressed as a 6 x 1 

column matrix as: [8] 

ˆ ˆ ˆ ˆ
h Rw w w         (1) 

where ŵ  is the warping function, ε is the 1D strain and matrices , , ,h R    and   are 
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In Eq. (2), g  = 1 − x2k3 + x3k2, where kα are the initial curvatures and the notation    forms an 

antisymmetric matrix from a vector according to     ijk k
e   using the permutation symbol eijk with 

 
1x

 


. The internal energy density is defined by the strain energy associated with this strain field 

2 TU D    (3) 

where D is the 6 x 6 symmetric material matrix and the notation 

2

2 3 2 3d d d d
S S

g x x h g         (4) 

The characteristic size of the domain S is denoted by h and the dimensionless coordinates 

 2 2 3 3/ , /x h x h      are introduced. 

2.1.2 Discretization  

The dimensional reduction from the original 3D structure to a 1D beam model can only be done approximately. 

As demonstrated in various applications, VAM can be used to construct a 1D formulation with minimum accuracy 

loss in comparison with the original 3D formulation. In order to deal with the arbitrary cross-sectional geometry 

and anisotropic materials, we need to turn to a numerical approach, such as FEA to find the warping functions. 

Therefore, we discretized the warping field using the finite element method at the cross-sectional level. By doing 

this, the unknown warping field was reduced to the displacements at the nodes of the mesh,  
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with S(x2,x3) representing the element shape functions and V as a column matrix of the nodal values of the 

warping functions over the cross-section. Substituting Eq. (5) into Eq. (1) and then into Eq. (3), we obtained 
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2.1.3 Stiffness matrix 

Depending on how the displacement field component V is considered, different forms of strain energy can be 

derived. Herein, a known component of warping was assumed, which corresponded to a set of non-classical 

degrees of freedom (d.o.f.) in the final beam model. If Ψq is the column matrix with these assumed deformation 

modes, the decomposition of the warping field can be written as 

   qV q x W x    (7) 

The vector of modal amplitudes, q, is a column matrix of one or more new unknown functions, and W is the new 

warping to be found. Through integration by parts, the potential of the generalized Timoshenko model was written 

as 
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 (8) 

2.2 Material model 

2.2.1 CNTs/fiber/polymer multi-scale composite material model 

The three-phase multiscale composites considered herein comprised of isotropic matrix, CNTs and fibers and 

were assumed to be fabricated by dispersing nanotubes within an isotropic polymeric matrix and by impregnating 

the conventional fibers with this nanodispersed resin system. The alignment of fibers could be different for each 

lamina through the thickness. The CNTs were assumed to be isotropic and uniformly distributed and randomly 

oriented through the matrix. Bonding between CNTs and matrix, and the CNTs dispersion in the matrix were 

assumed to be perfect; each CNT had the same mechanical properties depending on the aspect ratio; all CNTs 

were straight rods; there was no void in the matrix; fiber-matrix bonding was assumed to be perfect. The 

constituent materials were assumed to be linear elastic throughout the deformation. The effective material 

properties of the three-phase CNTs/fiber/polymer multiscale laminated composite can be predicted according to 

a hierarchical combination of Halpin-Tsai and micromechanics approaches via two steps as shown in Figure 1. 
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Figure 1. Hierarchy of the three-phase CNTs/fiber/polymer multiscale composites [21] 

The effective material properties of the multiscale composite were assumed to be orthotropic and can be 

predicted by [21] 
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where 11

FE , 22

FE , 12

FG , 
F  and 

F  are Young’s moduli, shear modulus, Poisson's ratio and mass density of the 

fibers, respectively, and 
MNCE , 

MNCG , 
MNC  and 

MNC  represent the corresponding properties of the isotropic 

matrix of nanocomposite.
 FV  and MNCV  refer to the volume fractions of the fibers and the nanocomposite 

matrix, respectively. 

According to the Halpin–Tsai equation, the tensile modulus of nanocomposites can be expressed as 
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where 11

CNE , CNV , 
CN

, 
CNd  and 

CNt  are the Young’s modulus, volume fraction, length, outer diameter and the 

thickness of carbon nanotubes, respectively, and MERV  and 
MERE  indicate the volume fraction and Young’s 

modulus of the isotropic epoxy resin matrix, respectively. 

The volume fraction of carbon nanotubes can be expressed as [21] 

 ( / ) ( / )

CN

CN CN CN MER CN MER CN

w
V

w w   


 
, (11) 

where 
CNw  is the mass fraction of the carbon nanotubes, 

CN  and 
MER are the mass densities of the carbon 

nanotube and epoxy resin matrix, respectively. 

Poisson’s ratio and mass density ρ can be expressed as 

 

,MNC MER 
MNC CN MER

CN MERV V   
 (12) 

where 
CN , 

MER  are mass densities of the carbon nanotubes and matrix and 
MER  is Poisson’s ratio for the 

epoxy resin matrix, respectively. As the amount of CNTs was small, Poisson’s ratio for the CNT composite was 

assumed to be the same as that of epoxy, 0.33 [21]. 

3 NUMERICAL STUDY 

The theoretical development presented in the previous section was numerically implemented in VABS. Not all 

stiffness components are shown since the stiffness matrix is symmetric. All results are given at the area centroid 

and the 6×6 stiffness matrix is arranged as 1: extension; 2: chordwise transverse shear; 3: flatwise transverse 

shear; 4: torsion; 5: flatwise bending; and 6: chordwise bending. It should be noted that stiffness components with 

relatively small values compared to the others are neglected in the tabular data and figures. In this study, Bell540 

airfoil cross-section was considered. The geometric parameters, material properties and stacking sequences of 

Bell540 are given in Figure. 2 and Ref. [1] unless otherwise specified. The complete blade had a span of 0.8124 

m (beyond the clamping area at the root). A finite element mesh with 9,885 6-noded triangular elements (40,850 

d.o.f.) was used. The predicted stiffness coefficients are given in Figure. 3. The beam exhibited extension-

chordwise bending (S16) and flatwise transverse shear-twist (S34) couplings.  

Cambered Region

[0°/90°/0°/0°]s

0.230092 LC

LC = 0.8124 m

0.334354 LC

x3

x2

Web

[90°/90°/0°/0°]s

Fairing

[0°/90°/0°]

Foam

 
 

Figure. 2. Profile of the Bell540 airfoil blade and ply-up. 

 

The results from Figure. 3 reveal that the most significant coupling terms were extension (S11), chordwise 

transverse shear (S22) and extension- chordwise bending (S16). The reinforcement achieved by MWCNTs is much 

lower than that by SWCNTs. Nevertheless, MWCNTs can still be an interesting choice due to the higher cost of 

large scale use of using SWCNTs in mass production applications. 
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Figure. 3. Effect of CNTs structure on the stiffness properties per unit length of Bell540 airfoil configuration  

(
CNw =1%, µ≈ 2.9376 kg/m, 2x = 3x =0., i2=1.354×10-3 kgm, i3=3.315 ×10-3 kgm, i23=0 kgm) 

4 CONCLUSIONS 

A finite-element-based, cross-sectional analysis for CNTs-reinforced multiscale composite beams was formulated 

from geometrically nonlinear, 3D elasticity. The 3D strain field was formulated in terms of 1D generalized strains 

and a 3D warping displacement. The developed formulation was numerically implemented in the VABS to 

compute the cross-section stiffness matrices and mass properties. The results indicated that the inclusion of a 

small weight percentage of carbon nanotubes in the polymer matrix was sufficient to induce a significant 

improvement in stiffness properties. In some cases, however, CNTs may be used to weaken some specific 

structural couplings. SWCNTs were shown to have more significant effects than MWCNTs on the stiffness 

properties. This may be due to lower specific surface area and defect structure of MWCNTs. Overall, CNTs can 

be used to tailor the design of beams and blades for specific stiffness properties. 
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