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ABSTRACT 
One of the recently developed methods of composite manufacturing is robot-assisted manufacturing; so-called 

Automated Fiber Placement (AFP). Through fiber steering along optimal curvilinear paths, AFP enables tailoring 

the material stiffness within laminated composite structures. This type of laminated composites is known as 

variable stiffness (VS) laminates which can improve the structural performance of composite structures. Recently, 

the use of AFP has been extended to design and manufacture of moderately-thick composites, especially for 

applications in manned submersibles and wind turbine blades. This paper focuses on a structural analysis of 

moderately-thick fiber-steered composite conical panels using Layer-wise method. The principle of minimum 

total potential energy and state-space approaches are applied to obtain buckling loads, natural frequencies, and 

bending stresses within the VS composite conical panels. Neglecting the manufacturing defects, several examples 

for buckling loads, natural frequencies and bending stress distributions in VS conical panels are studied. 

1 INTRODUCTION 

Over the past few decades, laminated composite structures have been extensively used in a wide range of 

applications from aerospace and automotive to naval, as well as in construction because of their high specific 

stiffness and strength properties and capability. Composite laminates are commonly manufactured by stacking the 

layers of dissimilar fiber orientations, or material constituents [1]. This conventional method of composite 

manufacturing is being replaced by advanced fabrication technologies, e.g. Automated Fiber Placement (AFP) 

and Additive Manufacturing. The advantages of AFP technology include, but are not limited to, improved quality, 

reduced waste material, reduced labour costs, accuracy and repeatability of the production process, and reduced 

manufacturing time [2]. Another benefit of AFP technology is its ability to steer fibres on the plane of a ply to 

fabricate controlled curvilinear paths, a process that was initially developed in [3]. This capability provides 

designers with the ability to tailor the structural behavior of composites’ parts not only through the thickness to 

change the stiffness and strength properties (straight fiber composites design) but also by spatially varying the 

point wise fiber orientations by actively steering individual fibre tows. 

In the literature, most of researchers have used two main approaches, finite element modeling or equivalent 

single-layer (ESL) theories, to obtain and optimize structural and thermal responses of fiber-steered (i.e., VS) 

composite structures subjected to multiple load scenarios, as discussed in the review paper [4]. Cylindrical and 

conical panels are also widely used in aerospace applications such as centre and aft fuselages. The numerical 

investigations on VS cylindrical and conical structures include but are not limited to bending-induced buckling 

analysis [5, 6], axial buckling analysis [7, 8], vibration response [9, 10], thermal behavior [11, 12], postbuckling 

simulation [13, 14], and multi-objective design [15, 16]. The second approach, ESL theories such as classical 

lamination and first and third order shear deformation theories (CLT, FSDT, and TSDT), has also been employed 

for structural analysis of fiber-steered composite laminates for flat panels in [17, 18], cylinders in [19], and conical 

panels in [20]. In this study, Layer-wise theory is of interest. In it, each physical layer can be modeled as a finite 

STRUCTURAL ANALYSIS OF MODERATELY-THICK FIBER-

STEERED COMPOSITE CONICAL PANELS 
 

Yazdani Sarvestani, H.1, Akbarzadeh, A.H.*1, Hojjat, M.2 
1AM3L Laboratory, Department of Bioresource Engineering, McGill University, Island of 

Montreal, QC, Canada H9X 3V9 
2Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC, 

Canada H3G 1M8 
* Corresponding author (hamid.akbarzadeh@mcgill.ca) 

Keywords: Automated fiber placement; Moderately-thick fiber-steered composite cylinder; 

Elasticity displacement field. 

 



2 

 

number of numerical and independent layers [21, 22]. Furthermore, research studies by [23, 24] show that Layer-

wise theory is computationally less expensive as compared to finite element simulations. Although a few 

investigations have used this kind of theory for a deflection response [25], free vibration [26] of fiber-steered 

plates, and static analysis of doubly-curved fiber-steered panels [27], less attention has been paid to fully 

developing Layer-wise theory for other types of shape or structural analysis. 

In the current study, we develop an advanced mathematical framework based on Layer-wise theory. This semi-

analytical framework is able accurately to predict mechanical structural responses, including the buckling load, 

natural frequency, deformation, and stress distributions of thick fiber-steered laminated composite conical panels. 

The solution is obtained for fiber-steered conical panels with arbitrary boundary conditions where this solution 

can be deduced for cylindrical shells and circular plates. 

2 FIBER-STEERED LAMINATED COMPOSITE CONICAL PANELS 

A fiber-steered laminated composite conical panel, shown in Fig. 1, is considered in the cylindrical coordinate 

system (x ,  θ ,  z )  located on the mid-surface and mid-span of the laminate where x, θ ,  and z are the axial, 

circumferential, and radial coordinates, respectively. The composite conical panel dimensions are presented as 

length L , total thickness h , minor reference radius R b , semi-vertex angle α ,  and span (or revolving) angle 2θ0. It 

is worth noting that from the conical panel both the cylindrical shell for α  = 0, and the circular plate for α  = π/2 

can be deduced. 

 

2.1. Fiber-Steering Paths for VS Conical Panels 

In this study, we consider two different path definitions. The first is a path with a linear angle variation, and 

the second is a path with constant curvature, which simplifies evaluation of a curvature constraint that may be 

imposed because of machine limitations [28]. 

 

2.1.1. Path with Linearly Varying Fiber Angles 
The fiber angle on a conical panel is defined to vary linearly along the axial direction from T0 at the small 

radius to T1 at the large radius [28]: 
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 where φ(x) is fiber orientation along the fiber path. 

 

2.1.2. Constant Curvature Path 
A path with constant curvature is also defined (see Fig. 2) so that the curvature constraint can be readily 

evaluated. Again, starting from an angle T0 at Rb and ending at an angle T1 at R1, the angle variation is according 

to [28]: 
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The corresponding value of the curvature is: 
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The standard notation to define a particular VS laminate with these fiber path definitions is represented by ˂ T0|T1˃, 

for a single layer, where T0 = T1 represents a straight fiber. The shifting direction of the reference fiber path, 

affecting both fiber angle and defect distribution, plays a major role in the maximum performance that can be 

achieved by fiber-steering [17]. 

3 DISPLACEMENT FIELD 

In LWT, the displacement components of a generic point in the laminate are assumed as [1]: 
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where k, here and in what follows, being a dummy index implies summation of terms from k=1 to k=N+1. In Eqs. 

(3a-c), u (x, θ, z, t), v (x, θ, z, t), and w (x, θ, z, t) denote the displacement components in the x, θ, and z directions, 

respectively. Uk (x, θ, t), Vk (x, θ, t), and Wk (x, θ, t) also represent the displacements of the points initially located 

on the kth surface of variable stiffness composite conical panels in the x, θ, and z directions, respectively, as seen 

in Fig. 1. Moreover, Φk (z) is the global Lagrangian interpolation function used for the discretization of the 

displacement through-thickness. The strain-displacement relations are given as: 
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where 𝑅𝜃 =
𝑅0

cosα
 and 𝑅0 = 𝑅𝑏 + 𝑥sinα. In Eq. (4) and what follows, a prime indicates an ordinary differentiation 

with respect to a z variable. 

4 EQUATIONS OF MOTION 

The equilibrium equations of a thick fiber-steered laminated composite conical panel with N numerical layers 

can be obtained using the principle of virtual displacement as follows: 
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where δU, δV, and δK are the virtual strain energy, virtual work done by external forces, and virtual kinetic energy, 

respectively. Employing the fundamental lemma of calculus of variations, the equilibrium equations of variable 

stiffness composite conical panels are obtained as: 
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where δkj is the Kronecker delta. The intensity of the applied external transverse force is denoted by q (x, θ, t) and 

ρ (x, θ, z) represents the conical panel density, and mass terms Ikj are defined as: 
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Eqs. (6) are, in general, 3(N+1) equilibrium equations corresponding to 3(N+1) unknown functions Uk, Vk, and 

Wk. The generalized stress and moment resultants are defined as: 
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It is noted that in Eqs. (7) and (8), the superscript k refers to the kth layer in the variable stiffness composite 

cylinder. 

5 SPACE SOLUTION 

In this section, we introduce a numerical methodology for solving the coupled governing differential equations 

(16) in the spatial coordinate system for alternative boundary conditions of the fiber-steered composite conical 

panels, i.e. simply-supported, clamped, and free boundary conditions. The Galerkin method is adopted here for 

solving the governing differential equations. Mathematical expressions for boundary conditions considered in this 

study are presented as [1]: 
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(b) Clamped edges (C): 
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where k = 1, 2, …, N+1. To implement the Galerkin method, the displacement field should be expressed in the 

following form for the arbitrary boundary conditions [1]: 
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where 𝑈𝑘

𝑚𝑛 , 𝑉𝑘
𝑚𝑛 , and 𝑊𝑘

𝑚𝑛  are unknown coefficients that should be determined to satisfy the governing 

equations, with m and n as arbitrary integers for summation; and 
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where λm and λn are defined in Table 1 for alternative boundary conditions. Using the Galerkin method and the 

approximate displacement field (Eq. (10)), and Eq. (11), we can solve the governing differential equations [1]: 
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where Ri (i = 1, 2, and 3) are the residuals of the governing differential equations for the admissible displacement 

field (Eq. (10)). Substituting Eq. (10) in governing equations and then applying the Galerkin formulation (Eq. 

(12)) leads to an expanded formulation, which yields a system of 3(N+1) differential equations as follows: 
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It should be observed that [M] and [K] are symmetric stiffness and mass matrices, respectively, and their 

components can be obtained by integration of [M'] and [K'], using Eq. (12). In addition, 𝑁̂ is a function of buckling 

loads for alternative boundary conditions. For harmonic and free vibration analyses, solutions in the following 

form are sought for Eq. (13): 
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Substitution of Eq. (14) in Eq. (13) yields an eigenvalue problem in the absence of mechanical load and nonlinear 

in-plane force resultant 𝑁̂. The fundamental frequency of the panels can be obtained by solving the following 

eigenvalue problem: 

     2 0 15 K M

 where ω is the fundamental frequency of the FG panel and |… | represent determinant in Eq. (15). The smallest 

eigenvalue obtained from Eq. (15) is called the fundamental vibration frequency. It should be noted that the 

nonlinear displacement term 𝑁̂ is omitted for static bending and forced vibration analysis, but it is preserved for 

the bifurcation buckling study of fiber-steered composite conical panels. Admissible trigonometric functions for 

different boundary conditions of fiber-steered composite conical panels are presented in Table 1, in which the 

symbols S, C, and F stand for immovable simply-supported, clamped and free edges, respectively. For example, 

CSCS refers to a fiber-steered composite conical panel with clamped edges at x = 0 and L and simply-supported 

edges at θ = ±θ0. It should be mentioned that admissible functions must satisfy the essential boundary conditions 

(i.e., generalized displacement) of the problem. 
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6 RESULTS AND DISCUSSION 

The mechanical analysis of thin to thick fiber-steered composite conical panels is performed. Two paths for 

fiber-steering are considered including a path with a linear angle variation, and a path with constant curvature. A 

uniformly distributed transverse load is considered to obtain the deflection and stress. All physical layers are 

assumed to have equal thickness (= 0.125 mm [10]) and are modeled as being made up of p numerical layers. In 

all the subsequent calculations, p is set equal to 9. The material properties of composites used for the analysis of 

constant and variable stiffness laminates are given in Table 2 [5]. We consider a conical panel made of a 40-ply 

balanced and symmetric laminate with a variable stiffness design of [±˂T0|T1˃]10s with the length L= 10.777 cm 

(L/h = 21.5), minor reference radius R b  = 6 cm, semi-vertex angle α  =  21 .80°,  and span angle 2θ0 = 90° [10] 

(unless otherwise mentioned). The out-of-plane deflection (w), critical buckling load (Ncr), fundamental frequency 

(ω), and stress (σ) are given in the following non-dimensional form: 
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6.1. Effects of Geometrical Parameters on Mechanical Response 
In this section, we study the effects of boundary conditions, number of layers, and geometrical parameters, 

such as length L , semi-vertex angle α ,  and span angle 2θ0, of conical panels on the mechanical responses of 

constant curvature fiber-steered conical panels with the lay-up sequences of [±˂0|90˃]10s. 

Figure 2 illustrates a design chart for fiber-steered composite conical panels with the [±˂0|90˃]10s lay-up sequence 

with a constant curvature path for the non-dimensional critical buckling load× maximum deflection (𝑵̅ 𝒘̅𝒎𝒂𝒙) 

versus the non-dimensional fundamental frequency× maximum deflection (𝝎̅ 𝒘̅𝒎𝒂𝒙) for different boundary 

conditions presented in Table 1 including CCCC, SSSS, CCFF, and SSFF in Fig. 2a; and CSCS, CCSS, CFCF, 

and SFSF in Fig. 2b. Semi-vertex angle increases from α = 0° to α  = 90°, and the length increases from L = 

0.5R b  to L = 2.5R b . As can be seen in Fig. 2, the effectiveness of a variable stiffness laminate depends on the 

boundary conditions. For example, a CCCC boundary condition shifts the buckling load-frequency domain to be 

higher. 

7 CONCLUSION 

We develop a semi-analytical methodology to accurately predict the mechanical responses of thick fiber-

steered composite conical panels. The model enables modelling and analysis of fiber-steered panels in the form 

of conical shells, cylindrical shells, and circular plates. Static bending, tension, torsion, buckling, and free 

vibration analyses have been formulated. We have first presented the governing equations obtained via Layer-

wise theory, and then solved them by using the hybrid Fourier-Galerkin method. 

 
Table 1: Values of αj, λi, and ζi for S-S, C-C, F-F, C-S, C-F and F-S boundary conditions [1]. 

Boundary 

conditions 

αj or βj 

(j=1, 2, 3, and 4) 

Characteristic equations and 

values of μλi (L×λm or 

2θ0×λn) 

ζi (ζm or ζn) 

S-S 

 

α1=0, α2=0 

α3=0, α4=-1 

 

sin(μλi)=0 

mπ or nπ 

 

1 or 1 

 

C-C 

 

α1=1, α2=-1 

α3=1, α4=-1 

 

cos(μλi)cosh(μλi)=1 

μλi=4.730, 7.853, … 

 

cosh(𝜇λi) − cos(𝜇λi)

sinh(𝜇λi) − sin(𝜇λi)
 

 

F-F 

 

α1=-1, α2=-1 

α3=-1, α4=-1 

 

cos(μλi)cosh(μλi)=1 

μλi=4.730, 7.853, … 

 

cosh(𝜇λi) − cos(𝜇λi)

sinh(𝜇λi) − sin(𝜇λi)
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C-S 

α1=1, α2=-1 

α3=1, α4=-1 

 

tan(μλi)=tanh(μλi) 

μλi=3.927, 7.069, … 

 

cosh(𝜇λi) − cos(𝜇λi)

sinh(𝜇λi) − sin(𝜇λi)
 

 

C-F 

α1=1, α2=-1 

α3=1, α4=-1 

 

cos(μλi)cosh(μλi)=-1 

μλi=1.875, 4.694, … 

 

cosh(𝜇λi) + cos(𝜇λi)

sinh(𝜇λi) + sin(𝜇λi)
 

 

F-S 
α1=1, α2=1 

α3=1, α4=1 

tan(μλi)=tanh(μλi) 

μλi=3.927, 7.069, … 

cosh(𝜇λi) − cos(𝜇λi)

sinh(𝜇λi) − sin(𝜇λi)
 

 
Table 2: Material properties of the composite laminates [23, 41]. 

Mechanical properties Value 

E11 

E22=E33 

G12 

G13= G23 

ʋ12=ʋ13=υ23 

ρ 

143 (GPa) 

9.1 (GPa) 

4.82 (GPa) 

4.9 (GPa) 

0.3 

1500 (kg/m3) 

 

 
Figure 1: Geometry of an N-layered fiber-steered composite conical panel: the coordinate system, ply sequences. 
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(a) (b) 

Figure 2: Design chart for fiber-steered composite conical panels [±˂0|90˃]10s with a constant curvature path for the non-

dimensional critical buckling load×maximum deflection (𝑵̅ 𝒘̅𝒎𝒂𝒙) vs. the non-dimensional fundamental 

frequency×maximum deflection (𝝎̅ 𝒘̅𝒎𝒂𝒙). 
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