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ABSTRACT 

Carbon NanoTubes (CNT’s), due to their superior mechanical, thermal and electrical properties, have recently 

attracted numerous applications in different fields. In particular, their use as the reinforcing constituent for polymer 

matrix composites in place of conventional fibers has led to the emergence of a new generation of advanced composite 

materials. However, one problem with the application of CNT’s as the reinforcing agent in polymers is the weak 

interfacial bonding between the CNT’s and the matrix. This shortcoming can be alleviated through the use of 

Functionally Graded Materials (FGM’s) in which material properties vary smoothly and continuously. This smooth 

variation of material properties is a major advantage of FGM’s over conventional laminated composites where the 

sudden change in material properties across the interface causes delamination. In addition, in FGM’s, the volume 

fractions of the constituents can be tailored for optimal performance of the structure. In this paper, the dynamic 

response of functionally graded nanocomposite beams under the action of a moving load as well as their free vibration 

on elastic foundations are investigated. Three different types of Carbon NanoTubes (CNT’s) distributions in the 

polymer matrix material are studied; uniform distribution (UD), symmetrically functionally graded (SFG) distribution 

and unsymmetrically functionally graded (USFG) distribution. The analyses are carried out by a mesh-free method 

using the two-dimensional theory of elasticity. In mesh-free methods unlike the FEM, the material variation is 

captured at the integration points, which therefore results in more accurate results for functionally graded materials. 

After validation, the effects of CNT’s distribution, the velocity and position of the moving load, slenderness ratios, 

boundary conditions and foundation stiffness on the dynamic behavior of the beam are examined. The results indicate 

the importance of the investigated effects from a design perspective. The current approach can serve as a benchmark 

against which other semi-analytical and numerical methods based on classical beam theories can be compared. 

1 INTRODUCTION  

Carbon NanoTubes (CNT’s), due to their supreme mechanical, thermal and electrical properties, have recently 

attracted numerous applications in different fields. [1-3] In particular, their use as the reinforcing constituent for 

polymer matrix composites in place of conventional fibers has led to the emergence of a new generation of 

advanced composite materials. However, one problem with the application of CNT’s as the reinforcing agent in 

polymers is the weak interfacial bonding between the CNT’s and the matrix. This shortcoming can be alleviated 

through the use of Functionally Graded Materials (FGM’s) in which material properties vary smoothly and 

continuously. [4] This smooth variation of material properties is a major advantage of FGM’s over conventional 

laminated composites where the sudden change in material properties across the interface causes delamination. In 
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addition, in FGM’s, the volume fractions of the constituents can be tailored for optimal performance of the 

structure.[5] It has been suggested by Shen (2009) [6] that using the concept of FGM, i.e., gradual distribution of 

CNT’s in the matrix material can considerably improve the interfacial bonding strength between the CNT’s and the 

matrix. Although a large amount of research has been dedicated to accurately obtaining the mechanical properties of 

Carbon NanoTube-Reinforced Composites (CNTRC’s) [7-12], not as many studies have yet been conducted on the 

global response of CNTRC’s to actual structural loading conditions in practical applications which is of course the 

ultimate purpose for the design and development of such materials. One example of the practical applications of 

such advanced composite materials are in FGM beam structures that are used to describe a lot of engineering 

problems and has application in geotechnics, road, railroad, marine engineering and bio-mechanics. In recent years, 

mesh free methods have been used as an efficient numerical method to solve different initial-boundary-value 

problems. Unlike the finite element method (FEM), in mesh-free methods the physical problem domain is modeled 

by only a set of scattered nodes without the need to be connected to form a closed polygon. The main advantage of 

mesh-free methods as compared to the FEM is the elimination of the mesh generation phase which can therefore 

save a considerable amount of time in the pre-processing phase.  In addition, the computed stress by Mesh free 

methods result in smooth strain and stress fields without the need for any post-processing technique. As for 

functionally graded materials, since in mesh-free methods unlike the FEM, the material variation is captured at the 

integration points, fewer nodes will be required in the analysis of the problem for the same level of accuracy [5]. 

Different mesh-free methods have so far been proposed. Examples are the Diffuse Element Method (DEM) [13], the 

Element-Free Galerkin (EFG) method [14], the Hp-Clouds method [15], the Reproducing Kernel Particle Method 

(RKPM) [16], the Partition of Unity Finite Element Method (PUFEM) [17], and the Meshless Local Petrov-

Galerkin (MLPG) method [18]. One of the most frequently used mesh-free methods in the analysis of solid 

mechanic problems is the Element Free Galerkin (EFG) method which utilizes the moving least square (MLS) 

shape functions. The main challenge in this method is the imposition of the essential boundary conditions due to the 

absence of the Kronecker delta property of the MLS shape function. To overcome this problem, the EFG method 

utilizes the Lagrange Multipliers Scheme for the imposition of the essential boundary conditions. However, this will 

be at the cost of increasing the number of degrees of freedom and resulting in a non-positive definite system matrix. 

In order to circumvent the afore-mentioned issue, in the present paper, the transformation technique [19] is used to 

impose the essential boundary conditions. In this technique, after the correction of the mesh-free shape functions, 

the essential boundary conditions are imposed as in the FEM causing the number of the degrees of freedom to 

remain unchanged. The bulk of the works in the literature are based on the assumptions of beam theories; mostly 

Euler-Bernoulli and Timoshenko. However, beam is a three-dimensional structure and although Timoshenko theory 

is an improvement on the Euler Bernoulli theory, the assumptions of the beam theories may not accurately represent 

the actual response of the structure. [20]. The object of the present work is to study the dynamic response of 

functionally graded nanocomposite beams under the action of a moving load as well as their free vibration on elastic 

foundations. In addition to the practical applications of the problem under consideration, the distinctive features of 

the current work are the use of a meshless method considering the afore-mentioned advantages and the two 

dimensional elasticity solution which can give a more realistic representation of the structures compared to beam 

theories especially as the aspect ratio of the beam increases. The FG beam in this study is reinforced by randomly 

oriented SWCNT’s. It is assumed that the material properties vary in the thickness direction and are approximated 

using the Mori-Tanaka method [21]. In the mesh-free method, the moving least square (MLS) shape functions are 

implemented to approximate the displacement field.  After validation, the effects of CNT’s distribution, the velocity 

and position of the moving load, slenderness ratios, boundary conditions and foundation stiffness on the dynamic 

behavior of the beam are examined. 

2 MATERIAL PROPERTIES 

As the reinforcing constituent, CNT’s are either aligned or randomly oriented in the isotropic matrix material. The 

effects of randomly oriented CNT’s on the elastic properties of CNTRC’s have been thoroughly investigated by Shi 

et al. [22]. They have concluded that despite the CNT’s having transversely isotropic properties, when the CNT’s 

are randomly oriented in the matrix, the composite material can be modeled as an isotropic material with its bulk K 

and shear modulus G defined as:   
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where Km and Gm are the shear and bulk moduli of the matrix material, respectively. Vr and Vm denote the volume 

fractions of reinforcements and matrix, respectively and  
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kr, lr , mr , nr and pr  are the Hill’s elastic moduli of the CNT’s. The effective Young’s Modulus E and Poisson’s ratio 

υ are defined as: 
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The volume fractions of the reinforcement Vr and matrix Vm are related as: 

 

1 mr VV  (9) 

 

Three different cases are investigated; uniform distribution (UD), symmetrically functionally graded (SFG) 

distribution and unsymmetrically functionally graded (USFG) distribution. The reinforcement volume fraction Vr 

for each case is defined as follows: 
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wr is the mass fraction of reinforcement. ρr and ρm are the densities of reinforcement and matrix, respectively. The 

mass density of the composite is calculated using the rule of mixtures: 
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mmrr VV    (13) 

 
Figure 1 schematically shows the FG beam cross sections for the three different CNT’s distribution types. Table 1 

lists the material properties of the SWCNT’s reinforcement predicted through replacement with an equivalent long 

fiber [23]. 

 

Figure 1: Schematic Representation of the CNT’s distribution within the matrix material 

 
Mechanical Property  

Longitudinal Modulus 649.12 (GPa) 

Transverse Modulus 11.27   (GPa) 

Longitudinal Shear Modulus 5.13     (GPa) 

Poisson’s ratio 0.284 

Density 1400  (kg/m3) 

Table 1: Material properties of the SWCNT’s reinforcement [23] 

 

3 PROBLEM FORMULATION 

 
The standard variational form of the equation of motion is expressed as follows: 
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where σ, ɛ, F, u and 𝐮  ̈ represent stress, strain, surface traction, displacement and acceleration vectors respectively. 

ᒥ is a part of boundary of domain Ω   on which traction F is applied. Stress and strain vectors are related through 

Hook’s law: 

 

Dεσ   (15) 

 

In the present work, moving least square (MLS) shape functions introduced by Lancaster and Salkauskas [24] are 

used to approximate the displacement vector u at any point of interest using the nodes in the local support domain 

of that point. For a two dimensional problem: 

 

uφu ˆ  (16) 
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ɸ and 𝐮̂ are the shape function matrix and the nodal values vector, respectively; n denotes the number of the nodes 

in the local support domain of the point of interest. 
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The strain-displacement relation can be expressed in terms of the nodal values 𝐮̂ as follows: 

 

 uBε ˆ  (19) 
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Substituting equations 15, 16 and 19 into the equation of motion (equation 14) yields: 

 

uφφuFφuuDBBu ̂)()ˆ()ˆ(ˆ)()ˆ( 


 ddd TTTTTT   
  (21) 

 

In the above-given equation the surface traction will be the reaction force of the elastic foundation which can be 

written in terms of nodal displacements: 

u
φ

KuφKF Pw
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(22) 

where KW and KP are defined as follows: 
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KW, known as the Winkler coefficient, is the spring stiffness of the foundation controlling the transverse deflection 

of the structure. KP, known as Pasternak coefficient, is the stiffness of a shear layer which accounts for the shear 

interactions on the vertical springs of the foundation. Figure 2 shows the geometry of a beam on Winkler-Pasternak 

foundation. 
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Figure 2: The geometry of the beam on a Winkler-Pasternak foundation 

Rearranging equation 21 considering the fact that it should hold for any arbitrary δ(𝐮̂)T leads to : 
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N is the total number of nodes in the problem domain. For numerical integration, the problem domain is discretized 

into a set of background cells with gauss points inside each cell. Then global stiffness matrix K is obtained 

numerically by sweeping all gauss points inside Ω. . Similarly global force vector f is formed numerically in the 

same manner but by sweeping all gauss points on ᒥ. Since the MLS shape functions do not possess the Kronecker 

delta property, the essential boundary conditions may not be directly imposed on the nodal vector 𝐔̂. To alleviate 

this problem, a transformation matrix is constructed which relates the real nodal displacement vector,  𝐔 to 𝐔̂  : 

 

UTU ˆ  
(29) 
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Using equation 25, equation 22 can be rewritten as: 

 

0UKUM  ˆˆ   (31) 
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4 RESULTS AND DISCUSSIONS 

4.1 Vibration Results 

Table 2 lists the fundamental frequency parameters for simply supported beams on Winkler and Pasternak 

foundations compared with the exact solution obtained by Chen et al. [25]. The results are seen to be in very good 

agreement with the literature for both thin and thick beams.  

 

Foundation Stiffness L/h=120 L/h=15 L/h=5 

𝒌̅w 𝒌̅p/π2 Present Exact [25] Present Exact [25] Present Exact [25] 

0 0 3.142080 3.141417 3.130338 3.1302475 3.048003 3.0479950 

 0.5 3.478399 3.476589 3.468103 3.4667123 3.395937 3.3945841 

 1.0 3.738382 3.735859 3.728751 3.7265663 3.660169 3.6580220 

 2.5 4.300635 4.296879 4.291623 4.2880929 4.221790 4.2183417 

        

100 0 3.748612 3.748219 3.739004 3.7389477 3.670508 3.6705003 

 0.5 3.961896 3.960669 3.952622 3.9516807 3.884874 3.8839762 

 1.0 4.145417 4.143565 4.136320 4.1347188 4.067915 4.0663637 

 2.5 4.585363 4.582264 4.576383 4.5734720 4.501957 4.4991384 

Table 2: Fundamental frequency parameters for simply supported beams on Winkler and Pasternak foundations 

In figure 3, the effect of the shear layer stiffness on the fundamental frequency of the structure is illustrated for two 

different slenderness ratios. It can be seen that for a given CNT’s volume fraction and foundation stiffness, due to 

the symmetrically linear distribution of CNT’s in the matrix material i.e., the existence of more CNT’s in the high 

bending stress regions farther from the neutral axis, the SFG has the highest bending stiffness and consequently the 

highest natural frequency of all the three cases. Similarly, the unsymmetrical distribution of CNT’s leads to the 

USFG distribution type having the lowest natural frequency. Also, increasing the foundation stiffness results in a 

more rigid structure thereby giving rise to the frequency of the vibration. From a design perspective, the vibrational 

response of a FG structure may be controlled in two ways; one way is through changing the distribution of the 

CNT’s in the matrix material and the other way is by changing stiffness of the elastic foundation on which it is 

resting. However, as can be seen for thin beams, the latter approach seems more practical. 

 

Figure 3: Effect of the shear layer stiffness on dimensionless fundamental frequency (C-C)  

 𝑽̂𝒓 = 𝟎. 𝟐𝟔, L/h=5, 𝒌̅𝒘 = 𝟎. 𝟒 

To study the effect of boundary conditions on the vibration of the SFG beams four combinations of free, simply 

supported, and clamped boundaries designated as C-C, C-S, S-S, C-F have been considered as shown in Figure 4. 
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The letters F, S, and C denote free, simply supported and clamped, respectively. It is seen that the fundamental 

frequency increases with greater geometric constraint in the following sequence (C-F, C-S, S-S, and C-C) which is 

due to the increase in the bending stiffness of the structure 

 

Figure 4: Effect of boundary conditions on dimensionless fundamental frequency  

 𝑽̂𝒓 = 𝟎. 𝟐𝟔, L/h=5, 𝒌̅𝒑 = 𝟎. 𝟎𝟐 

4.2 Moving Load Results  

In this section, the dynamic behavior of the FG beam under the action of a moving load is studied. Figure 5 shows 

the deflection of the beam center for two different velocities during the free vibration i.e. after the load has exited 

the beam span. One can observe that the amplitude of the free vibration increases with the increase of the moving 

load velocity. It can also be seen that once the moving load has exited the beam span, the amplitude of the 

variations becomes stable due to the absence of damping. Another point worth mentioning is the phase difference 

between the three distribution types which increases with the elapse of time. 

 

 
Fig. 5a: Deflection of the beam center  

(V=100m/s) 

 
Fig. 5b: Deflection of the beam center  

(V=10m/s) 

 

Next, the effect of the velocity of the moving load is investigated. It can be seen in Figure 6 that increasing the 

velocity of the moving load delays the maximum deflection of the beam center. This delay increases with the 
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velocity of the moving load such that for the highest velocity, V=210 m/s, this maximum deflection occurs when the 

load has reached the very end of the beam span. 

 

 
Fig. 6: Beam center deflections for different positions and velocity of the moving load 

 

5 CONCLUSIONS 

Some aspects of the dynamic behavior of functionally graded beams reinforced by randomly oriented SWCNT’s are 

studied using a mesh-free method. Three different types of CNT’s distributions in the polymer matrix material are 

investigated; uniform distribution (UD), symmetrically functionally graded (SFG) distribution and unsymmetrically 

functionally graded (USFG) distribution. The current two dimensional elasticity approach can serve as a benchmark 

against which other semi-analytical and numerical methods based on classical beam theories can be compared. 
The symmetrical distribution of CNT’s in the matrix material causes the SFG beam to have the highest bending 

stiffness and consequently the highest natural frequency of all the three cases. Similarly, the unsymmetrical 

distribution of CNT’s, results in the USFG having the lowest natural frequency. Based on the same reasoning the 

SFG beam possesses the highest bending stiffness and thus the lowest deflection of the three cases. The rate of 

frequency increase due to foundation stiffness is seen to be higher for thin beams in comparison with thick beams. 

As for the moving load analysis, it is observed that once the moving load has exited the beam span, the amplitude of 

the free vibration increases with the increase of the moving load velocity and that the phase difference between the 

three distribution types increases with time. A delay is observed between the maximum deflection of the beam 

center and the position of the load and is seen to increase with the moving load velocity. Also, the position of the 

beam where the maximum deflection of the beam takes place is seen to be travelling towards the end of the beam 

span as the velocity increases. 
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