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ABSTRACT 

The exceptional optoelectronic properties of quantum dots (QDs) have stimulated the development 

of QD based composite materials in recent years. At the nanoscale, the inclusion of QDs strongly influences 

the overall properties of the macroscopic structure of the composite materials. In the present paper, a 

micromechanical model is developed for predicting the effective elastic and piezoelectric properties of the 

QD embedded fiber reinforced composite (FRP) materials. The model is based on modification and 

application of the multiscale Asymptotic Homogenization technique which has been developed for the 

periodic composites. The effective elastic and piezoelectric properties of the composite are determined 

through the solution of the derived local problems formulated on the unit cell of the composite material. 
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1.       INTRODUCTION 

Quantum dots are strained zero-dimensional nanostructures which are embedded in a host material 

with different structural properties. The initial strain is generated due to the lattice mismatch or the thermal 

expansion difference between the two materials which also induces a piezoelectric field (Pan, 2002). The 

tuneability of the strain and piezoelectric field of the quantum dot structure is one of the most important 

features of quantum dots which in turn affect the electrical and optical properties of the QD structure (Wang 

et al., 2006). Thanks to this unique property, quantum dots have shown significant promise for 

microelectronics and optoelectronic devices. Recently, For the first time, Fischer et al. (2015) embedded 

quantum dot-based sensors into fiber-reinforced composite to devise a structural health monitoring (SHM) 

system where a functional layered quantum dots were integrated into the composite to visualizes mechanical 

impact by quenching photoluminescence. Fang et al. (2017) labeled quantum dots at the interface between 

GFRP and matrix to monitor the damage due to the immersion of composite structure into seawater. They 

demonstrated that quantum dots can detect barely visible seawater immersion damage due to their 

fluorescence property. Kim et al. (2018) also used aqueous QD solutions for crack monitoring of cement-

based materials. 

Some theoretical approaches have been developed for the modeling of quantum dot heterostructures. 

The most common method is the Continuum Elasticity approach based on Eshelby’s inclusion theory 

(Marangati & Sharma, 2007). Green’s function method has been proved to be more efficient for calculating 

strain and piezoelectric field for anisotropic and arbitrarily shaped quantum dot structures (Marangati and
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Sharma, 2007). The second approach is the atomistic simulation. A common technique for this approach is 

to use valence force field (VFF) model with keating potential (Kikuchi et al., 2001). The third approach is 

the numerical method based on continuum elasticity. This basically utilizes the finite difference and the 

finite element method whereby geometrical symmetry of the island shapes is assumed, and the strain energy 

of the structure is minimized (Liu and Jerry, 2002). 

In the present paper, the general Asymptotic Homogenization micromechanical model is derived for 

the quantum dot embedded FRP composite material. The derivation is based on the asymptotic 

homogenization technique developed by Kalamkarov et al. (Kalamkarov, 1992, 2014; Kalamkarov and 

Kolpakov, 1997; Kalamkarov and Georgiades, 2004). The asymptotic homogenization technique for the 

periodic smart composite plates with rapidly varying thickness is modified by including nanoscopic scale 

in the smart structure and considering infinite boundary condition in one direction. The original problem for 

the regularly non-homogeneous smart QD embedded composite structure with rapidly oscillating thickness 

reduces to the system of four ‘unit cell’ local problems that enable the determination of the effective 

homogenized properties and subsequently the stress and strain fields in the nanocomposite structure. 

 

2.       HOMOGENIZED MODEL FOR SMART COMPOSITE STRUCTURES WITH EMBEDDED 

QUANTUM DOTS 

2.1     Problem Formulation 

Consider a thin smart layer of periodically arranged quantum dots in the matrix as shown (Figure 1). 

The periodic structure is obtained by repeating a certain small unit cell Ωδ in the x1 – x2 plane (refer to Figure 

2). A characteristic dimensionless parameter δ is introduced, where, 

 
𝛿 =

𝑙

𝐿
 (1) 

Here, L is the global lateral dimension of the structure and 𝑙 is the local lateral dimension of the unit 

cell.  

 
Figure 1: Arbitrarily shaped quantum dots embedded smart FRP composite structure. 



 

 

 
Figure 2: Unit cell (Ωδ) of the quantum dots embedded smart FRP composite structure. 

 

The unit cell of the problem is defined by the following inequalities, see Figure 2: 

 

    −
𝛿ℎ1

2
< 𝑥1 <

𝛿ℎ1

2
 ;  −

𝛿ℎ2

2
< 𝑥2 <

𝛿ℎ2

2
 ;  −∞ < 𝑥3 < 𝛿𝐹 

 

    𝑆 = 𝛿𝐹  ( 
𝑥1

𝛿ℎ1
 ,

𝑥2

𝛿ℎ2
 ) 

 

(2) 

Where, δh1 and δh2 define the lateral dimensions of the unit cell and F is governed by the profile of 

the top surface. For the analysis, the thickness of the piezoelectric substrate is considered infinite in the x3 

direction in comparison with the quantum dots dimension embedded on the surface. Moreover, the unit cells 

are periodic in x1 and x2 directions. 

If 𝜀𝑘𝑙
∗  is the lattice mismatch strain or eigenstrain, then 

 

     𝜀𝑘𝑙
∗ =  

𝑎𝑚 − 𝑎𝑄𝐷

𝑎𝑄𝐷
 (3) 

 

𝑎𝑚 and 𝑎𝑄𝐷  are the lattice constant for matrix and quantum dot, respectively. The elastic strain is 

given by subtraction of the eigenstrain from the total strain, 

 

     𝜀𝑘𝑙
𝑒 = 𝜀𝑘𝑙 − 𝜀𝑘𝑙

∗   (4) 

The eigenstrain in an elastic material and its representation by the equivalent body force are well-

established in classical micromechanics (Mura, 1987; Wang et al., 2006). 

     𝑃𝑖(𝑥) = −𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙,𝑖
∗ (𝑥) (5) 

The constitutive equation for the stress is defined as, 



 

     𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙{(𝜀𝑘𝑙

𝑒 − 𝜀𝑘𝑙
∗ ) − 𝑑𝑘𝑙𝑚𝑅𝑚} (6) 

Where, 

 
    𝜀𝑘𝑙

𝑒 =  
1

2
(𝑢𝑘,𝑙 + 𝑢𝑙,𝑘) (7) 

Here, 𝑐𝑖𝑗𝑘𝑙, 𝑑𝑘𝑙𝑚 are the tensors of the elastic and piezoelectric coefficient, respectively. 𝑅𝑚 is the 

electric field vector. The governing equation for elastic equilibrium of the structure is finally written as, 

     𝜎𝑖𝑗,𝑗 − 𝑃𝑖 = 0 (8) 

The structure in Figure 1 is periodic in the both lateral directions and non-periodic in the transverse 

direction. The material coefficients in Eq. (6) depend only on the nanoscopic variables 𝑦𝛼, z, (where α = 1, 

2), whereas the dependent field variables depend on both the nanoscopic and macroscopic variables, yi (i = 

1, 2, z) and xi, respectively. The relation between the nanoscopic and macroscopic variables are as follows, 

 
    𝑦1 =

𝑥1

𝛿ℎ1
, 𝑦2 =

𝑥2

𝛿ℎ2
, 𝑧 =

𝑥3

𝛿
 ;  

𝜕

𝜕𝑥𝛼
→

𝜕

𝜕𝑥𝛼
+

1

𝛿ℎ𝛼
 

𝜕

𝜕𝑦𝛼
 ;  

𝜕

𝜕𝑥3
=  

1

𝛿
 

𝜕

𝜕𝑧
  (9) 

 

2.2     Two-scale Asymptotic Expansions 

Asymptotic expansion for displacement and stress are as follows: 

     𝑢𝑖 = 𝑢𝑖
(0)

(𝑥) + 𝛿𝑢𝑖
(1)

(𝒙, 𝒚, 𝑧) + 𝛿2𝑢𝑖
(2)

(𝒙, 𝒚, 𝑧) +  … … … (10) 

 

     𝜎𝑖𝑗 = 𝜎𝑖𝑗
(0)(𝒙, 𝒚, 𝑧) + 𝛿𝜎𝑖𝑗

(1)(𝒙, 𝒚, 𝑧) + 𝛿2𝜎𝑖𝑗
(2)(𝒙, 𝒚, 𝑧) + … … … (11) 

 

Where all functions are assumed to be periodic in nanoscopic variables 𝑦𝛼. 

Boundary conditions, 

 

     𝜎𝑖𝑗𝑛𝑗 = 𝑇𝑖  (on top surface z = z+) (12) 

Here 𝑛𝑗 is the unit normal vector in the outward direction to the top surface.  

     𝜎𝑖𝑗 → 0   (when  𝑧 → −∞) (13) 

As a result of asymptotic homogenization procedure, the following relations for the displacements 

and stresses are derived: 

 
    𝑢1 = 𝛿𝑉1

(1)
(𝑥) − 𝑧

𝜕𝑤

𝜕𝑥1
+ 𝛿2 (𝑈1

𝛼𝛽
𝜀𝛼𝛽

(1)
+ 𝑉1

𝛼𝛽
𝜏𝛼𝛽 + 𝑈1

𝑚𝑅𝑚
(0)

+ 𝑉1
𝑚𝑅𝑚

(1)
) (14) 

 

 

 

 

 

 

    𝑢2 = 𝛿𝑉2
(1)(𝑥) − 𝑧

𝜕𝑤

𝜕𝑥1
+ 𝛿2 (𝑈2

𝛼𝛽
𝜀𝛼𝛽

(1)
+ 𝑉2

𝛼𝛽
𝜏𝛼𝛽 + 𝑈2

𝑚𝑅𝑚
(0)

+ 𝑉2
𝑚𝑅𝑚

(1)
) (15) 



 

     𝑢3 = 𝑤(𝑥) + 𝛿𝑉3
(1)

(𝑥) + 𝛿2 (𝑈3
𝛼𝛽

𝜀𝛼𝛽
(1)

+ 𝑉3
𝛼𝛽

𝜏𝛼𝛽 + 𝑈3
𝑚𝑅𝑚

(0)
+ 𝑉3

𝑚𝑅𝑚
(1)

) (16) 

 

     𝜎𝑖𝑗 = 𝛿 (𝑏𝑖𝑗
𝛼𝛽

𝜀𝛼𝛽
(1)

+ 𝑏𝑖𝑗
∗𝛼𝛽

 𝜏𝛼𝛽 − 𝑑𝑖𝑗
𝑘 𝑅𝑘

(0)
− 𝑑𝑖𝑗

∗𝑘𝑅𝑘
(1)

) (17) 

  

Here in the text Latin indexes assume values 1,2,3; Greek indexes assume values 1,2. 

The functions 𝑈𝑛
𝑙𝑚(𝑦1, 𝑦2, 𝑧) and 𝑉𝑛

𝑙𝑚(𝑦1, 𝑦2, 𝑧) in Eqs. (14) - (17), are periodic in variables 𝑦1, 𝑦2 

and are solutions of the unit cell problems which are formulated as follows: 

 
    

1

ℎ𝛼
 

𝜕

𝜕𝑦𝛼
 𝑏𝑖𝛼

𝛼𝛽
+

𝜕

𝜕𝑧
 𝑏𝑖3

𝛼𝛽
= 0 

    𝑏𝑖𝑗
𝛼𝛽

 𝑁𝑗̇ = 0  at 𝑧 = 𝑧+ 

    𝑏𝑖𝑗
𝛼𝛽

→ 0   at 𝑧 → −∞ 

(18) 

 

 
    

1

ℎ𝛼
 

𝜕

𝜕𝑦𝛼
 𝑏𝑖𝛼

∗µ𝛽
+

𝜕

𝜕𝑧
 𝑏𝑖3

∗µ𝛽
= 0 

    𝑏𝑖𝑗
∗µ𝛽

 𝑁𝑗̇ = 0  on 𝑧 = 𝑧+ 

    𝑏𝑖𝑗
∗µ𝛽

→ 0   at 𝑧 → −∞ 

 

(19) 

 
    

1

ℎ𝛼
 

𝜕

𝜕𝑦𝛼
 𝑑𝑖𝛼

𝑘 +
𝜕

𝜕𝑧
 𝑑𝑖3

𝑘 = 0 

    𝑑𝑖𝑗
𝑘  𝑁𝑗̇ = 0  on 𝑧 = 𝑧+ 

    𝑑𝑖𝑗
𝑘 → 0   at 𝑧 → −∞ 

(20) 

 

 
    

1

ℎ𝛼
 

𝜕

𝜕𝑦𝛼
 𝑑𝑖𝛼

∗𝑘 +
𝜕

𝜕𝑧
 𝑑𝑖3

∗𝑘 = 0 

    𝑑𝑖𝑗
∗𝑘  𝑁𝑗̇ = 0  on 𝑧 = 𝑧+ 

    𝑑𝑖𝑗
∗𝑘 → 0   at 𝑧 → −∞ 

(21) 

 

Here the following definitions are used: 



 

 

    𝑏𝑖𝑗
𝑛𝑙 =

1

ℎ𝛽
𝑐𝑖𝑗𝑘𝛽  

𝜕

𝜕𝑦𝛽
𝑈𝑘

𝑛𝑙  + 𝑐𝑖𝑗𝑘3

𝜕

𝜕𝑧
 𝑈𝑘

𝑛𝑙 +  𝑐𝑖𝑗𝑛𝑙 

    𝑏𝑖𝑗
∗𝑛𝑙 =

1

ℎ𝛽
𝑐𝑖𝑗𝑘𝛽  

𝜕

𝜕𝑦𝛽
𝑉𝑘

𝑛𝑙  + 𝑐𝑖𝑗𝑘3

𝜕

𝜕𝑧
 𝑉𝑘

𝑛𝑙 +  𝑧𝑐𝑖𝑗𝑛𝑙 

    𝑑𝑖𝑗
𝑚 =  𝑃𝑖𝑗𝑚 −

1

ℎ𝛽
𝑐𝑖𝑗𝑘𝛽  

𝜕

𝜕𝑦𝛽
𝑈𝑘

𝑚 − 𝑐𝑖𝑗𝑘3

𝜕

𝜕𝑧
 𝑈𝑘

𝑚 

    𝑑𝑖𝑗
∗𝑚 =  𝑧 𝑃𝑖𝑗𝑚 −

1

ℎ𝛽
𝑐𝑖𝑗𝑘𝛽  

𝜕

𝜕𝑦𝛽
𝑉𝑘

𝑚 − 𝑐𝑖𝑗𝑘3

𝜕

𝜕𝑧
 𝑉𝑘

𝑚 

    𝑁𝑗 = (
1

ℎ1

𝜕𝑆

𝜕𝑦1
,

1

ℎ2

𝜕𝑆

𝜕𝑦2
, 1) 

(22) 

The effective properties of the homogenized material are calculated by taking the average of the first 

four equations of Eq. (22) over the volume of the unit cell Ω:  

 
   < 𝑏𝑖𝑗

𝑛𝑙 > = ∫ ( 
1

ℎ𝛽
𝑐𝑖𝑗𝑘𝛽  

𝜕

𝜕𝑦𝛽
𝑈𝑘

𝑛𝑙  + 𝑐𝑖𝑗𝑘3

𝜕

𝜕𝑧
 𝑈𝑘

𝑛𝑙 +  𝑐𝑖𝑗𝑛𝑙  ) 𝑑𝑣 

   < 𝑏𝑖𝑗
∗𝑛𝑙 > = ∫ ( 

1

ℎ𝛽
𝑐𝑖𝑗𝑘𝛽  

𝜕

𝜕𝑦𝛽
𝑉𝑘

𝑛𝑙  + 𝑐𝑖𝑗𝑘3

𝜕

𝜕𝑧
 𝑉𝑘

𝑛𝑙 +  𝑧𝑐𝑖𝑗𝑛𝑙) 𝑑𝑣 

   < 𝑑𝑖𝑗
𝑚 > =  ∫ (𝑃𝑖𝑗𝑚 −

1

ℎ𝛽
𝑐𝑖𝑗𝑘𝛽  

𝜕

𝜕𝑦𝛽
𝑈𝑘

𝑚 − 𝑐𝑖𝑗𝑘3

𝜕

𝜕𝑧
 𝑈𝑘

𝑚) 𝑑𝑣 

  < 𝑑𝑖𝑗
∗𝑚 > =   ∫ (𝑧 𝑃𝑖𝑗𝑚 −

1

ℎ𝛽
𝑐𝑖𝑗𝑘𝛽  

𝜕

𝜕𝑦𝛽
𝑉𝑘

𝑚 − 𝑐𝑖𝑗𝑘3

𝜕

𝜕𝑧
 𝑉𝑘

𝑚) 𝑑𝑣 

(23) 

 

By multiplying the unit cell problems by z and applying the Gauss Divergence theorem and periodic 

boundary conditions it can be shown that (see Kalamkarov and Georgiades, 2004) 

 < 𝑏𝑖3
µ𝛽

> = < 𝑏𝑖3
∗µ𝛽

>= < 𝑑𝑖3
𝑚 > = < 𝑑𝑖3

∗𝑚 > =  0 (24) 

 

The effective properties defined by Eq. (23) enter the global governing homogenized equations as the 

effective equivalent material properties to find the stresses and displacements of the homogenized structure. 

 

3.       CONCLUSIONS 

The developed global formulation of the quantum dot embedded fiber reinforced composite model 

provides the basis for quantifying the average (effective) stress and strain states of the composite structure, 

with varying geometries of the quantum dots. The set of four 3D local unit cell problems in the nanoscopic 

scale are derived which are dependent on the periodicity boundary condition in the both lateral directions 

and the decaying of all functions in the transverse direction as 𝑧 → −∞. The solution of these unit cell 



 

problems yields to a set of functions which, when averaged over the volume of the periodicity cell, determine 

the effective elastic and piezoelectric coefficients of the homogenized quantum dots embedded fiber 

reinforced smart composite structure. These sets of effective coefficients in turn give the displacement and 

stress fields by entering them into the governing equations of the system. 

The next step will be to apply the developed model for different cases of QD embedded composites 

and compare the analytical results with numerical results by using Finite Element Method. 
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