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1 INTRODUCTION 

High-performance carbon fibre composite components made from continuous fibre laminates are not only known 
for their excellent specific strength and stiffness, but also for their laborious processing. A highly promising alterna-
tive is found in long discontinuous fibre composites based on a randomly oriented strands (ROS) architecture [1–3], 
often supplied as Carbon Fibre Sheet Moulding Compounds (CF-SMCs). These materials consist of chopped fibre 
tows randomly spread in-plane and are usually supplied pre-impregnated with a partially cured quick-curing ther-
moset resin. The ROS architecture allows for high fibre volume fractions with sufficiently long fibres to ideally trans-
fer loads between fibre and matrix, while their discontinuous nature makes them usable in highly efficient compres-
sion moulding processes [1]. Along with the choice of carbon fibres as a reinforcement, these materials can be con-
sidered distinctly different from classical SMCs, usually reinforced by glass fibres at lower fibre contents. As such, 
CF-SMC strike an excellent balance between mechanical performance and processability, making them an option 
for medium to high production volume structural parts, where composites were previously too cost inhibitive to be 
considered. 
 
ROS composites and their mechanical performance have been extensively studied at the coupon level. Their stiff-
ness is usually comparable to their continuous fibre quasi-isotropic analogs, while strength is significantly 
lower [1,2,4]. Stress concentrations at the ends of the load bearing strands tend to trigger the matrix-dominated 
failure modes ROS are known for [3], making them seem brittle and notch-insensitive. Besides the specifics of the 
material architecture itself, the processing has a significant impact. Depending on the initial shape and placement 
of the charge inside of the mould, the flow paths and directions of the material vary, causing a preferential alignment 
of the strands, giving the final part anisotropic properties [1,5]. Furthermore, high in-mould flow has been linked to 
a more irregular morphology [2] with fibre waviness, kinking, swirling, and tow distortion, as well as defects such as 
matrix cracking, voids and, in extreme cases, excessive resin percolation with incomplete mould filling [5]. Due to 
the inherent heterogeneity of the material, these morphology irregularities are not necessarily the source of failure 
during testing [2,3], but they do contribute to the overall high variability in the data [6]. Finally, weld lines, where 
two or more flow-fronts meet during moulding have been shown to greatly decrease local strength [7]. The tight 
packing of long fibres resists intermingling of the strands, and the lack of reinforcement across the interface causes 
a strong performance knockdown compared to the otherwise well performing material. Consequently, charge de-
sign has been called one of the most important tools to control part performance during processing [7]. Yet, meth-
ods for charge design, especially for complex structures, have not been extensively explored. 
 
To take full advantage of the potential of CF-SMCs, a low-flow moulding approach is often preferred [1,2]. Here, the 
charge already closely resembles the final part shape. In its most extreme form, this requires complex shapes to be 
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cut from the SMC roll and preformed much like in continuous fibre processing [1]. This is in stark contrast to the 
simple bulk moulding approach used for classical SMCs, where the charge shape is not controlled. Wasting offcut 
material around those shapes directly contradicts the economical motivation behind SMCs. Hence, an optimal 
charge design method must consider both its impact on mechanical performance and its practical implications for 
the processing step. 
 
To find the best solution to a given problem, most optimization schemes iteratively attempt to find the values of 
the design variable 𝑥 =  [𝑥1 ⋯ 𝑥𝑁]  which minimizes the value of an objective function 𝑓(𝑥1, … , 𝑥𝑁). This func-
tion, also often called cost function or fitness function, quantifies how well the objective is met during each iteration. 
The choice of optimization scheme, which governs how the design variables are altered based on the cost, has a 
sizable impact on the computational performance of the problem [8]. Most relevant to this work are gradient-based 
optimization and evolutionary optimization, also called genetic algorithms. As the name suggests, the former re-
quires the computation of the derivative of the cost and then steps the design variables along the downward direc-
tion of that gradient. However, derivatives may not be available in many cases and the algorithms tend to get stuck 
in local minima. Evolutionary optimization instead processes multiple combinations of design variables as part of a 
population and then evolves the population by recombining and mutating the fittest solutions. This biomimetic 
approach may require more runs than gradient-based algorithms, but requires less in-depth knowledge of the prob-
lem, lends itself well to parallelization of the runs within a population and can be extended to multi-objective opti-
mization [9]. 
 
In the case of the SMC charge design problem, evaluating the objective function is a heterogeneous and complex 
problem with multiple possible implementations. Furthermore, the resulting charge design is intended to be used 
by an automated production line and further optimized based on the feedback from it. Hence, data exchange within 
the framework bridges multiple different hardware and software systems and eventually controls robotic compo-
nents. In the field of robotics, skill-based software architectures have recently gained traction as a way to tackle 
such requirements [10,11]. They hierarchically decompose the capabilities of a system into skills, modelling them as 
human-like abilities that can be orchestrated to fulfill a task. Primitive skills, represent the most basic capabilities of 
the system as intuitive symbolic units. Skills are combinations of primitive skills and can be used as solution-neutral 
building blocks for a task [11]. 
 
This paper thus presents the software framework at the core of a numerical optimization-based approach that is 
currently being developed to methodically design CF-SMC charges. Its software architecture is detailed in the fol-
lowing. A basic example for its use is introduced, which considers processing effort as well as the implications pro-
cessing has on mechanical performance. 

2 SKILL-BASED OPTIMIZATION SOFTWARE FRAMEWORK 

Ultimately, the proposed framework will be implemented as a control system for a highly integrated and automated 
production line for CF-SMC components. For any given part design, a charge design is calculated and optimized. 
From its solution, instructions for automatic ply cutters and robot arms assembling the charge are extracted. Au-
tonomously converting a part design into an CF-SMC charge and optimizing this configuration can be done in a 
plethora of ways using different objectives and design variables. The given example focuses on balancing the trade-
off between processing effort and flow induced defects purely based on numerical process modelling, but the frame-
work is also designed to be easily reconfigurable. For instance, it can be restructured to pursue the same objective 
based on on-line sensor feedback or to optimize the charge for a desired stiffness anisotropy through guided flow. 
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That also means that it must adapt to the capabilities of the system it is being executed on, depending on its respec-
tive computational capabilities or whether it is connected to a real production system and which robotic actuators, 
or sensor systems are available. This is enabled by the modular skill-based software architecture shown in Figure 1. 
The framework is split into three layers. At the lowest level, the primitive skillset of the system contains the actual 
bits of software to be executed, each comprising one basic capability only, and wrapped in semantically coherent 
skills to ensure their compatibility.  The order in which these skills are executed is defined on the superordinate 
scheduling layer. Here, tasks and skills are modelled as finite state machines to modularize the capabilities of the 
system. The planning layer houses the task controller and skillset manager, which are responsible for the assembly 
and supervised execution of the task, respectively. The inner workings of the layers are explained in more detail in 
the following. The example application shown in Figure 1 is explored in Section 3. 
 

 

Figure 1: Skill-based software architecture for charge design optimization. The shown task is exemplary and can be arbitrarily 
reconfigured. 

2.1 Use of Skills 

As in similar architectures, primitive skills contain the capabilities of a system on its most basic level, where a further 
subdivision would be of no added benefit to its usability. Bringing these capabilities into a shared context is imper-
ative, especially since SMC charge design optimization inherently marries multiple fields, from computational ge-
ometry over numerical solid mechanics and fluid simulation to robotics and automation. A skill can thus either con-
tain all its required functions directly, or simply act as a wrapper for the software it controls via the software’s 
application programming interface. It may also implement the control of and the communication with a robot or 
sensor system and parse the exchanged data into a format usable for the optimization. Primitive skills are 
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implemented as classes that inherit basic functionalities for data interfacing and communication with the task con-
troller. This encapsulation allows for their use without detailed knowledge of their inner workings and their reusa-
bility at different stages of the optimization. 

2.2 Modularization on Multiple Levels of Abstraction 

Building on the abstract modelling of the system capabilities through primitive skills, the scheduling layer is meant 
to further modularize and, thus, simplify the operation of the system. In fact, the states of the task state machine 
do not even refer to specific pieces of software. A task simply defines the type of skills to be executed, their order, 
and the format of the data handed from one skill to the next. As such, it may feature concurrencies and multiple 
optimization loops, which are easily configured without the need to program these features. The specific skill suiting 
a certain type features the same arbitrary state machine structure with defined data interfaces as tasks and can 
contain its own optimization loops. Here, two skills of the same type do not have to feature the same state machine 
structure, to allow for diverse problem-solving approaches, since highly sophisticated algorithms can likely benefit 
from more sub-division than a crude implementation addressing the same issue. The modularity of the framework 
allows for the quick and easy recombination of different skills to try out different methods based on the available 
software and hardware options. It also makes it easy to iteratively improve the implementation step-by-step, by 
working on one skill at a time. 

2.3 Task Control and Assembly 

All new skills and primitive skills are registered with the skillset manager, either automatically at start-up or manually 
during run-time. The latter is practical for long runs, where the improved implementation of a skill can substitute 
the old one. Once the task controller is prompted to start executing a task, it configures the state machine and its 
transitions and then requests specific skills for all the required types of skills from the skillset manager. From then 
it executes and supervises the execution of the skills and their subordinate primitives. From the standardized control 
interface built into each skill and primitive, its status, data inquiries and outputs are available to the task controller. 
Besides passing on data from one skill to the next, it also grants the skills access to shared data on a blackboard 
object. Based on the status feedback, it addresses the skills in the predefined order. 

3 CHARGE DESIGN APPLICATION EXAMPLE 

The approach introduced in the following represents a basic implementation of the charge design optimization 
problem, using minimal design variable dimensions, and is only based on modelling the process. Keeping in mind 
the modular nature of the framework, more optimization loops within or following the current one may be intro-
duced and on-line process optimization through feedback from real-world processing data can be implemented. 

3.1 Optimization Scheme 

The bulk moulding approach for preparing conventional SMC charges is not controlled enough for low flow moulding 
or any processing concept in which the charge shape is deliberately adapted to control the final part attributes. 
Rather, the charge is assembled from multiple plies cut from the SMC roll and stacked to form a macro-scale lami-
nate. How accurate and intricate this laminate is, can be broadly quantified by the charge coverage 𝜑cover. Depend-
ing on the exact implementation of the skills, the design variable 𝑥 may either be linked to 𝜑cover directly, or to a 
multi-dimensional design variable 𝑥, where: 

𝜑cover = 𝑓(𝑥1, … , 𝑥𝑁). (1) 
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The interdisciplinary nature of the charge optimization, in which a small change in the design variable can likely 
cause an algorithm to take a completely different approach to a problem, means it is unlikely that smooth gradients 
exist in the solution space. Hence, evolutionary optimization algorithms are favored in this example, especially for 
heterogeneous multi-dimensional design variables. 

3.2 3-Dimensional Slicing Skill 

Since compression moulding can be used for complex 3-dimensional (3D) parts, the shape of the plies of the macro-
scale laminate are initially generated by a process inspired by the slicing algorithms used in additive manufacturing. 
Initially, the 3D part design is provided as a universally usable geometry file format. Its rotation is predetermined 
such that its vertical axis coincides with the mould closure direction and no design features, like undercuts, interfere 
with demoulding (Figure 2a). 

a) 

 

b) 

 

c) 

 

Figure 2: 3D slicing concept. a) Part design with reference plane marked in transparent blue. b) Slices in 3D-space based on 
the curvature of the reference plane. c) Flattened slices to be passed to the subsequent skill. 

As the uncured SMC plies are drapable, the preform can be curved to better approximate the part shape. Unlike in 
traditional slicing algorithms that dissect the part based on a flat reference plane, this 3D-slicing requires the defi-
nition of a curved initial reference surface that is done either manually or algorithmically. Its in-plane direction is 
also the in-plane direction of the SMC plies, meaning it dictates the initial orthotropic fibre orientation distribution. 
A first slice of the geometry is found as the intersection between the reference surface and the part geometry. 
Multiple different algorithms for such Boolean operations for 3D geometries have been proposed and implemented 
in different software and programming modules. The modular nature of the skill-based architecture allows for easy 
benchmarking of different approaches. Two duplicates of the reference surface are shifted equal distances up and 
down the vertical axis and the slicing is repeated until it the surfaces no longer intersect the part (Figure 2b). Ex-
truding these slices represents the extreme case of a highly accurate charge, which might not be feasible. Instead, 
the aim is to optimize the actual plies generated based on the shapes of the slices. 
 
To evaluate and adapt the shape of the slices into usable SMC plies, their curved shapes are flattened to yield planar 
shapes, as shown in Figure 2c. This step essentially mimics the reverse of the draping step of the flat SMC plies into 
the curved preform. It can be achieved through different means with varying degrees of complexity, ranging from a 
simple projection onto a plane to numerical draping simulations. As is the case with the specific implementation of 
each step, the choice of the respective primitive skill is a balance of computational cost versus required intricacy of 
the solution. 
 
It is worth noting that the slicing needs to occur during each instance of the optimization loop, since a given charge 
coverage 𝜑cover affects the distance 𝑑 between slices. For a 100 % coverage configuration, 𝑑 will be equal to thick-
ness 𝑡SMC of the chosen SMC, yielding a preform reminiscent of an additively manufactured part. For any lower 
amount of coverage, however, more slices are needed to assure the sufficient material volume of the charge. This 
is achieved by setting: 
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𝑑 = 𝜑cover𝑡SMC, (2) 

as illustrated in Figure 3a. As the actual plies are of thickness 𝑡SMC, this eventually results in a preform that resembles 
the part design, but is simpler, slimmer and taller (Figure 3b). The assumption that the plies will mainly flow along 
the surface geometry of the slices to fill the mould (Figure 3c) is fair for very high degrees of coverage but might not 
apply to simpler charges. Hence, accurate numerical process modelling is imperative (Section 3.4). 
 

a) 

 
 

b) 
 

 

c) 

 

Figure 3: From part design to charge design. a) Part cross section with slices marked in red. b) Charge in bottom mould with 
extruded slices marked in red and SMC plies marked in black. c) After compression moulding, the plies effectively have the 

thickness of the initial slices. 

3.3 Nesting and Simplification Skill 

Simplifying the shape of the slices aims to decrease the cost of processing. In practice that means mainly avoiding 
large amounts of offcuts and complicated ply shapes that take a long time to cut. Both offcuts and cutting time can 
be quantified using 2-dimensional (2D) ply nesting algorithms as are used for many CNC applications. The underlying 
task is an irregular 2D bin packing problem, where a number of polygonal shapes, in this case all of the SMC plies, 
are fit into a larger rectangular shape representing the SMC roll. As an alternative to commercial software, freeware 
versions have been released, and solutions from literature can be implemented. Most are based on heuristics con-
sisting of a placement strategy and an optimization of the order in which the shapes are inserted, to occupy the 
least amount of space possible in one direction. They return the nested configuration of the ply shapes to be evalu-
ated as part of the overall charge optimization. Assuming the nesting algorithm pulls all plies to the left, we define 
the area of the used SMC material as rectangle with the same width of the roll and the length of the rightmost point 
of the nested shapes, measured from the beginning of the roll. How efficiently the material is used with a certain 
charge configuration is given by the offcut ratio: 

𝜑cut =  
𝐴rect − 𝐴part

𝐴part
, (3) 

where 𝐴rect is the area of the rectangle and 𝐴part is the area of SMC needed completely fill the volume of the part 

including some predefined excess material for flashing. The cutting effort can be evaluated based on the accumu-
lated outline length of all plies, where coincident lines stemming from a good nesting result, translate to saved 
cutting time, since they only need to be cut once. Actually simplifying the shape of the slices into well nesting plies 
can be done in many ways and, if implemented algorithmically, represents an intricate computational geometry 
problem. The best fitting algorithm and the rules that govern the same, based on applied composite materials 
knowledge, will be further investigated in the future. Note that 𝜑cover, which controls the area of each ply, might 
have to be adjusted to achieve 𝐴part, since the slicing algorithm returns an integer number of slices with varying 

sizes. 

3.4 Process Simulation Skill 

To evaluate the quality of the charge, the simplified plies are mapped back onto the plies in 3D-space and extruded 
to form a 3D-representation of the charge design. Combined with the original part design as the mould, it can then 

𝑑 𝑡𝑆𝑀𝐶  
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be used in a compression moulding process simulation. Such simulations for short fibre composites are widely used 
in industry and implemented in commercially available simulation tools. In the case of ROS, the long fibres and high 
fibre content significantly complicate the flow behaviour, limiting the applicability of these tools. Nonetheless, 
proven methods of varying computational cost exist in the literature [12,13]. The ideal choice of process model for 
the given optimization application will depend on the required level of detail of its output and its respective com-
putational efficiency, as optimization requires multiple runs. In any case, a Lagrangian displacement field 𝑈 describ-
ing the discretized flow of the charge during moulding harbours the necessary performance metrics for the optimi-
zation. Modelling the exact stresses is not necessary for this initial implementation.   

3.5 Objective function development 

The overall objective of the optimization is to find the best possible price-to-performance ratio in the processing of 
a given CF-SMC part. Given the most relevant processing aspects outlined above, that means identifying the sweet 
spot between minimizing the amount of material wasted due to offcuts and minimizing the performance knockdown 
due to flow induced defects. Thus, the objective function to be minimized is defined as follows: 

cost = 𝑓(𝜑cut) + 𝑓(𝑈), (4) 

The purpose of the two terms is to identify the relevant value ranges of their respective constituents, normalize and 
weigh them to bring them into the same industrially applicable context. In the case of the 𝜑cut, this is relatively 
straightforward, as the cost of the wasted material can be directly related to the ideally predicted overall production 
cost per part. While the given approach considers offcuts as lost, reusing them for the bulk moulding of non-struc-
tural parts may be an interesting approach to explore in the future. Furthermore, the costing calculation will con-
sider the preforming time needed per part, including the cutting and stacking times of the plies, which are expected 
to elongate the overall cycle time with added complexity. The actual impact of the simulated in-mould flow on the 
part quality, however, is non-trivial and will thus be represented by a quantifiable proxy derived from 𝑈.  
 
Both objective function terms must be weighed on a case-by-case basis, depending on the application of the part. 
For example, when producing safety-critical parts that push the strength boundaries of the material, the cost is 
expected to be less dominating factor. For parts in stiffness driven applications – a property which is not as affected 
by high-flow moulding – cost is likely much more relevant. 
 
Since the nesting algorithm described in Section 3.3 is a non-trivial geometric problem, its solution 𝑓(𝜑𝑐𝑢𝑡) is likely 
not continuous. Once a gradual change in the design variable results in one of the ply dimensions exceeding the 
width of the sheet, for example, the previously optimal nesting pattern may no longer be eligible and the new solu-
tion can result in a much higher amount of offcuts and, thus, a lower fitness. Furthermore, as the implementation 
of these problems often relies on genetic algorithms, it may not even be necessarily deterministic. Given enough 
time to converge and a sufficient design space, however, it is to be expected that simpler shapes will overall trend 
toward a lower amount of wasted material with reasonable repeatability of the heuristic solution. 
 
Since 𝑓(𝑈) involves modelling complex physical phenomena numerically, some degree of discontinuity may be ex-
pected due to a change in geometrical features triggering unforeseen flow interactions. Yet, assuming Stokes flow 
due to the high viscosity of the matrix material, their impact on the displacement and strain within the mould should 
be minor. These considerations affirm the potential of differential evolution as an initial optimization scheme. Figure 
4 shows the outcome of a simple test of the optimization framework with crude models as its skills. Using 𝜑cover 
directly as the design variable, we expect the contribution of 𝑈 to the cost to decrease with increased coverage and 
the contribution of 𝑈 to increase. They are for now modelled as arbitrary cubic functions of 𝜑cover. Adding the une-
venness of the nesting result as static 1-dimensional Perlin noise, the overall cost features multiple local minima 
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and one global minimum. By adding some dynamic noise to the outcome of every run, we represent the non-deter-
ministic behavior of the nesting. For a population size of 10, a common differential evolution algorithm approxi-
mates the minimum well, despite the noise. The required number of iterations heavily depends on how the toler-
ance of the convergence criterion, i.e. the standard deviation of the population after convergence, compares to the 
magnitude of the dynamic noise. The shown optimization task converged within 8 iterations, with the tolerance and 
the magnitude of the dynamic noise both set to 0.04. 

 

Figure 4: Evaluating the objective function using simple arbitrary models as skills. 

3.6 Benchmarking 

To validate the applicability of the optimization framework to a charge design problem, a simple benchmark is in-
troduced. The proposed benchmark is designed to be non-analytical and feature the complexities of the charge 
design application, yet it still has a clearly optimal solution that the computation must find. Consider a simple extru-
sion with uniform thickness of 30𝑡SMC and curvature as shown in Figure 5a. 

a) 

 

b) 

 

c) 
 
 

 

Figure 5: L-shape benchmark problem. a) Part design. b) Slice marked in grey and simplified ply marked in red. c) Nested 
configuration of ideal plies requiring low flow and no offcuts. 

Using a reference plane with the same curvature as the part surface, each slice returned by the 3D slicing algorithm 
has the identical L-shape shown in Figure 5b. All SMC plies are cut from a roll with width 4𝑎. The limited complexity 
of the slices results in a significant simplification of the 2D ply design problem: A rectangular shape fitting the longer 
leg of the L-shape will result in no offcuts, but the material will have to flow to fill the mould. The other extreme 
would be to cut plies that completely cover the slice, but will result in offcuts, as they cannot be arranged in a 
rectangular shape within the confines of the roll dimensions. The trade-off solution considered in this example uses 

2.5𝑎 𝑙1 

5𝑎 

𝑎 

𝑙2 

4𝑎 
… 
→ 
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L-shaped plies as shown in Figure 5b, and varies the length of both legs 𝑙1 and 𝑙2 to find an optimum balance be-
tween offcuts and flow. If a cost of 3𝜑cut  is assigned to the wasted material due to offcuts, and a cost of 
max(𝑈leg1) + max(𝑈leg2) is assigned to the performance knockdown due to the flow, the optimization should result 

in the configuration depicted in Figure 5c, since it does not require offcuts and only requires a maximum in-plane 
flow distance of 0.5𝑎. Here 𝑈leg1 and 𝑈leg2 refer to the parts of the displacement field that belong to the legs of the 

L-shape, respectively. 
The benchmark was run based on a differential evolution algorithm with a population size of 10. Since the number 
of plies 𝑛 is an integer, 𝑙1 and 𝑙2 are not completely independent and instead, the design variable 𝑥 = [𝑙1 𝑛] was 
chosen. The 𝑛 shapes resulting from the 3D-Slicing skill were shortened to form the plies, which were then trans-
ferred as vector graphics into a nesting algorithm based on open-source software. The nesting uses a no-fit-polygon 
placement strategy and evolutionary optimization for the placement order. To keep compute times manageable, 
the nesting was constrained to 10 s for each run. The processing simulation was significantly simplified, to concen-
trate on the remaining aspects of the optimization. Assuming each of the identical plies stays in-plane, their in-
mould flow becomes a 2D-problem, applicable to FEA. Assuming Newtonian behavior, Stokes flow, and complete 
mould filling, we can induce the flow as a Dirichlet boundary conditions, which alleviates the need for exact material 
parameters [12]. The guesses leading to a converged solution and their respective fitness values are pictured in 
Figure 6a. 

a) 

 

b)  

 

Figure 6: Optimization results of L-shape benchmark. a) Cost results based on the two design variables. b) Isolated 𝑙1 design 
variable only showing runs with 𝑛 = 32 ∓ 2. 

As expected, the optimum values found using the framework are 𝑙1 ≈ 1, and 𝑛 = 32, corresponding to the bench-
mark solution. Isolating the 𝑙1-axis, and only showing guesses where 𝑛 = 32 ∓ 2, yields a visualization of the opti-
mization steps as in Figure 6 b. Like in the arbitrary model in Figure 4, the weighted flow shows an overall downward 
trend, and the weighted offcuts have an overall upward trend, with some local minima where favorable nesting 
configurations are possible. The expected differences in the weighted offcuts due to the non-deterministic nature 
of the nesting algorithm can also be observed. Over 5 different runs, the average cost of the optimized solution was 
0.90 with a standard deviation of 0.15. This contrasts with the theoretic optimal solution, which has cost 0.59 asso-
ciated with it. This can be attributed to the nesting algorithm, which usually cannot find the theoretic optimal nest-
ing pattern within the 10 s time frame. 
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4 CONCLUSIONS 

An initial overview of the optimization system being developed to design CF-SMC charges was presented. The soft-
ware framework facilitates easy expandability into the realms of compression moulding process simulation and on-
line process monitoring and control. Marrying the two is expected to facilitate sizable gains in control over the part 
performance while managing the industrial feasibility of the process. An initial implementation of the charge design 
optimization loop was introduced, and the background of each step was laid out. A simple benchmark has demon-
strated the overall feasibility of different software interacting within the framework. 

5 ACKNOWLEDGEMENTS 

The authors would like to acknowledge the financial support provided by the Natural Sciences and Engineering Re-
search Council of Canada as well as PRIMA Québec. We kindly thank our industrial partner for their continued sup-
port and guidance. 

6 REFERENCES 

[1] Visweswaraiah SB, Selezneva M, Lessard L, Hubert P. Mechanical characterisation and modelling of randomly oriented 
strand architecture and their hybrids – A general review. J Reinf Plast Compos 2018;37:548–80.  

[2] Martulli LM, Muyshondt L, Kerschbaum M, Pimenta S, Lomov S V, Swolfs Y. Carbon fibre sheet moulding compounds with 
high in-mould flow: Linking morphology to tensile and compressive properties. Compos Part A Appl Sci Manuf 2019;126.  

[3] Johanson K, Harper LT, Johnson MS, Warrior NA. Heterogeneity of discontinuous carbon fibre composites: Damage 
initiation captured by Digital Image Correlation. Compos Part A Appl Sci Manuf 2015;68:304–12.  

[4] Feraboli P, Peitso E, Deleo F, Cleveland T, Stickler PB. Characterization of prepreg-based discontinuous carbon fiber/epoxy 
systems. J Reinf Plast Compos 2009;28:1191–214. 

[5] Evans AD, Qian CC, Turner TA, Harper LT, Warrior NA. Flow characteristics of carbon fibre moulding compounds. Compos 
Part A Appl Sci Manuf 2016;90:1–12. 

[6] Li Y, Pimenta S, Singgih J, Nothdurfter S, Schuffenhauer K. Experimental investigation of randomly-oriented tow-based 
discontinuous composites and their equivalent laminates. Compos Part A Appl Sci Manuf 2017;102:64–75. 

[7] Martulli LM, Kerschbaum M, Lomov S V., Swolfs Y. Weld lines in tow-based sheet moulding compounds tensile properties: 
Morphological detrimental factors. Compos Part A Appl Sci Manuf 2020;139:106109. 

[8] Nikbakt S, Kamarian S, Shakeri M. A review on optimization of composite structures Part I: Laminated composites. Compos 
Struct 2018;195:158–85. 

[9] Fengler B, Kärger L, Henning F, Hrymak A. Multi-Objective Patch Optimization with Integrated Kinematic Draping 
Simulation for Continuous–Discontinuous Fiber-Reinforced Composite Structures. J Compos Sci 2018, Vol 2, Page 22 
2018;2:22. 

[10] Herrero H, Moughlbay AA, Outón JL, Sallé D, de Ipiña KL. Skill based robot programming: Assembly, vision and Workspace 
Monitoring skill interaction. Neurocomputing 2017;255:61–70.  

[11] Heuss L, Blank A, Dengler S, Zikeli GL, Reinhart G, Franke J. Modular Robot Software Framework for the Intelligent and 
Flexible Composition of Its Skills. IFIP Adv. Inf. Commun. Technol., vol. 566, 2019, p. 248–56. 

[12] Favaloro AJ, Sommer DE, Denos BR, Pipes RB. Simulation of prepreg platelet compression molding: Method and 
orientation validation. J Rheol (N Y N Y) 2018;62:1443. https://doi.org/10.1122/1.5044533. 

[13] Teuwsen J, Hohn SK, Osswald TA. Direct fiber simulation of a compression molded ribbed structure made of a sheet 
molding compound with randomly oriented carbon/epoxy prepreg strands—a comparison of predicted fiber orientations 
with computed tomography analyses. J Compos Sci 2020;4.  

 


