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ABSTRACT 

For true simulation of the mechanical behavior of a material by a phenomenological constitutive model, the 
parameters of the model should be characterized effectively and accurately. In this work, we propose a physics-
informed neural network (PINN) framework to characterize the damage behavior of composites based on a limited 
set of data acquired from the local zone of damage. For development of the proposed framework, the fracture 
process zone in an over-height compact tension (OCT) test setup is considered as the damage domain of interest 
and a PINN is tailored to this setup for inverse analysis in order to characterizate the constitutive parameters. 
Governing principles such as the constitutive relations and equilibrium equations are incorporated in the loss 
function of the PINN. The proposed framework is validated by characterization of parameters of a coupled 
damage-plasticity material model applied to simulation of the response of a quasi-isotropic composite laminate.  

1 INTRODUCTION 

With ongoing development of nonlinear and complex constitutive models for simulating damage in composite 
materials, it is imperative to efficiently characterize (identify) the material parameters used in these constitutive 
models. In order to identify the parameters of a constitutive model, inverse analyses have been frequently used in 
the literature e.g. [1]–[3]. Most inverse analyses require repetitive forward simulations. In these methods, input 
material parameters in the simulations are adjusted by optimization of an objective function in an iterative 
procedure to reproduce the experimental results.  
For application of a physics-based macroscopic damage model of composite, characterization of the strain-
softening law is needed in addition to initial elastic properties and strength values e.g. [4]. For the construction of 
strain-softening curve of the laminate, Zobeiry et al. [5] developed a method based on performing over-height 
compact tension (OCT) and compact compression (CC) experiments combined with using Digital Image Correlation 
(DIC) technique for recording full-field displacement along the specimen surface. Damage boundaries and 
initiation strain are identified by checking local equilibrium conditions at virtual nodes, and strain-softening curves 
are then constructed by making certain assumptions about average stress and strain within the damage zone 
based on those values at the boundary between the damaged and elastic (undamaged) regions. Despite adoption 
of inverse methods, in this work there is no prior assumption on the shape of the strain-softening curve, however, 
a complex data analysis scheme is required and the assumptions associated with the calculation of stress and 
strain in the damage zone may lead to loss of accuracy.  
Rapid development of data-driven models as the fourth scientific paradigm and availability of deep learning 
software such as Tensorflow [6] have prompted their application to constitutive modeling and characterization 
e.g. [7], [8]. In a recent study on the application of theory-guided machine learning in damage of composites, a 
neural network model has been developed for the characterization of the tensile damage in composites [9]. This 
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model, that is trained by 10,000 FE simulations, approximates the damage parameters based on the 
experimentally measured force-displacement data. This approach helps to characterize damage with reduced 
experimental effort. However, the training of the neural networks is data demanding and requires conducting 
many high-fidelity and robust FE simulations.  
Physics-informed neural networks (PINN),  see for example [10], [11] among others, are alternative methods in 
machine learning for incorporating the prior knowledge of the problem into the neural network algorithm. For this 
purpose, the prior knowledge of the system, that can be physical laws, constitutive relationships or empirical 
governing rules, are formulated into the loss functions. PINNs have been used as new classes of numerical solvers 
for PDEs, e.g. [12]. PINN can also be used in solving inverse problems to identify the unknown parameters. 
Haghighat et al. [13] have demonstrated application of  PINNs for identification of Lame’s constants of an isotropic 
elastic material under plane-strain conditions.  
In this work, we present a physics-informed neural network framework for characterization of tensile damage 
parameters of composites. The constitutive model that is studied for this purpose is a coupled damage-plasticity 
model. It should be noted that although this particular constitutive model is employed in this study, the proposed 
framework can be adapted to other forms of constitutive models.   

2 Methodology for damage characterization  

2.1 Constitutive model 
Several damage models based on both discrete and continuum approaches have been developed in the literature. 
In this work, for simulation of the highly nonlinear damage response of composite laminates, an isotropic coupled 
damage-plasticity constitutive model is adopted. In this model, elasto-plastic constitutive relations are formulated 
in the effective stress space defined as [14]:  

𝝈𝝈� = 𝝈𝝈
1−𝜔𝜔

  (1) 

where 𝝈𝝈 is the Cauchy stress tensor representing the actual state of stress in the damaged material and 𝝈𝝈� is the 
effective stress tensor representing the state of stress in an equivalent  undamaged material subject to the same 
strain state. 𝜔𝜔 denotes the isotropic scalar damage variable, which varies between 0 and 1. 
The elasto-plastic model is defined using a von-Mises yield criterion and associated plastic flow rule with no 
hardening. The rate form of the elasto-plastic constitutive relations can be expressed as: 

𝝈̇𝝈 = (1 −𝜔𝜔)𝑪𝑪: �𝝐̇𝝐 − 𝝐𝝐𝒑̇𝒑� − 𝜔̇𝜔𝑪𝑪: (𝝐𝝐 − 𝝐𝝐𝒑𝒑)    (2) 

where  𝑪𝑪 is the fourth-order elastic stiffness operator defined in terms of the material’s elastic modulus 𝐸𝐸 and 
Poisson’s  ratio 𝜈𝜈.  𝝐𝝐𝒑𝒑 is the plastic strain tensor that can be determined according to the normality hypothesis. In 
this model, the damage variable 𝜔𝜔 should be defined as a function of equivalent plastic strain  𝜖𝜖𝑝̅𝑝. For the 
purposes of this study, damage growth is considered as a linear function of the equivalent plastic strain that 
results in a linear strain-softening response. Also, it is assumed that plasticity and damage initiate simultaneously:  

𝜔𝜔 = 𝜖𝜖�𝑝𝑝
𝜖𝜖�𝑝𝑝𝑝𝑝

                  0 < 𝜖𝜖𝑝̅𝑝 < 𝜖𝜖𝑝̅𝑝𝑝𝑝  (3) 

where  𝜖𝜖𝑝̅𝑝𝑝𝑝 represents the equivalent plastic strain at damage saturation that is referred to as damage saturation 
strain in the rest of this paper. The schematic of this damage evolution curve and corresponding stress-strain 
curve under uniaxial loading condition is shown in Figure 1.  The material parameters that are to be characterized 
for this model are elastic modulus 𝐸𝐸, Poisson’s ratio 𝜈𝜈, peak (yield) stress 𝜎𝜎𝑖𝑖  and damage saturation strain 𝜖𝜖𝑝̅𝑝𝑝𝑝. It is 
worth noting that any general shape other than the bilinear shape shown here for the stress-strain curve can be 
implemented in this constitutive model.  
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Figure 1. Coupled damage-plasticity material model :  stress-strain curve (left) and damage-effective plastic strain curve (right) 

2.2 Test set up for damage characterization 
It is important to have a testing configuration/domain that promotes a stable growth of damage in a given 
composite laminate to trigger a softening response and generate enough data in the strain-softening regime of 
the material. To this end, the over-height compact tension (OCT) test developed by Kongshavn and Poursartip [15] 
is adopted here (Figure 2). For the current characterization approach, the data that needs to be collected from this 
test include the time histories of the applied force (𝐹𝐹) and strain in the zone of interest Ω that lies ahead of the 
notch as shown in Figure 2.  
 

 
Figure 2. Over-height compact tension (OCT) test used for data generation  

2.3 PINN solver 
Building upon the proposed solver for elasto-plastic constitutive models described in [16], a PINN model is tailored 
to the OCT setup. Similar to [16], in order to solve the nonlinear system of ODEs of plasticity, the plastic multiplier, 
𝛾𝛾 is approximated by a neural network as a continuous function of time 𝑡𝑡. Here, as there is no direct measurement 
of the stress field 𝝈𝝈, it is also approximated by the same neural network. For the current plane stress setup, the 
stress field 𝝈𝝈 is expressed as:  

𝝈𝝈 = �
𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑦𝑦𝑦𝑦�

 (4) 

The constructed neural network can be represented as:  

(𝛾𝛾,𝝈𝝈) ≈ (𝛾𝛾,� 𝝈𝝈�) =  𝒩𝒩(𝑡𝑡;𝜽𝜽,𝝀𝝀)         (5) 

where, 𝑡𝑡 is the input to the neural network, 𝒩𝒩 denotes the feed-forward neural network, 𝜽𝜽 represents the 
network parameters (weights and biases), 𝝀𝝀 denotes the vector of material parameters, and (𝛾𝛾,� 𝝈𝝈�) are the 
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approximated plastic multiplier and stress tensor in the zone of interest. The parameters of the neural network 𝜽𝜽 
and the unknown material parameters 𝝀𝝀 can be learned simultaneously by minimizing a loss function that 
represents the error in the network's predictions.  
The loss function in the PINN, ℒ , is the summation of losses associated with any prior knowledge ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  and losses 
associated with the training data ℒ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑:  

ℒ = ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + ℒ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (6) 

The physics of the problem is governed by global equilibrium of force and moment when taking a through 
thickness cross-section at the fracture process zone ahead of the notch as shown in Figure 3. These equilibrium 
equations can be considered as constraints that should be embedded in the ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝:  

𝐹𝐹 − 𝑏𝑏 ∫ 𝜎𝜎�𝑦𝑦𝑦𝑦𝑑𝑑𝑑𝑑
𝐿𝐿
0 = 0         (7) 

𝐹𝐹.𝐷𝐷 − 𝑏𝑏� 𝜎𝜎�𝑦𝑦𝑦𝑦𝑥𝑥𝑥𝑥𝑥𝑥
𝐿𝐿

0
= 0 (8) 

where b is the thickness of the laminate. 
 

 
Figure 3. Free body diagram of the OCT specimen used for equilibrium constraints 

For the calculation of the integrals in the above equations, with inspiration from FE, the spatial domain Ω is 
discretized into elements, and Gauss quadrature points in each element are used for integration. Loss terms 
corresponding to the equilibrium constraints are written in terms of mean squared error (MSE):  

ℒ𝐹𝐹 = 1
𝑛𝑛
∑ �𝐹𝐹|𝑡𝑡𝑖𝑖 − 𝑏𝑏 ∫ 𝜎𝜎�𝑦𝑦𝑦𝑦𝑑𝑑𝑑𝑑

𝐿𝐿
0 |𝑡𝑡𝑖𝑖�

2
𝑛𝑛
𝑖𝑖=1               𝑡𝑡𝑖𝑖 ∈ [0,𝑇𝑇] (9) 

ℒ𝑀𝑀 = 1
𝑛𝑛
∑ �𝐹𝐹.𝐷𝐷|𝑡𝑡𝑖𝑖 − 𝑏𝑏 ∫ 𝜎𝜎�𝑦𝑦𝑦𝑦𝑥𝑥𝑥𝑥𝑥𝑥

𝐿𝐿
0 |𝑡𝑡𝑖𝑖�

2
𝑛𝑛
𝑖𝑖=1         𝑡𝑡𝑖𝑖 ∈ [0,𝑇𝑇] (10) 

where 𝑡𝑡𝑖𝑖  represent the time steps at which external force 𝐹𝐹 and neural network outputs 𝛾𝛾,� 𝝈𝝈� are sampled and n is 
the total number of datapoints. 
Constitutive relationships are another key prior. Here, the general form of ODEs associated with the constitutive 
relations at one integration point, is represented as 𝑔𝑔�𝝐𝝐, 𝝐̇𝝐, 𝛾𝛾�,𝝈𝝈�, 𝛾𝛾�̇,𝝈𝝈�̇,𝝀𝝀� = 0. For a detailed review of these 
constraints one may refer to Table 1 in [16]. The material parameters that are to be predicted are collected into 
one vector denoted as 𝝀𝝀 = �𝐸𝐸, 𝜈𝜈,𝜎𝜎𝑖𝑖 , 𝜖𝜖𝑝̅𝑝𝑝𝑝�. The residuals of these ODEs are considered as the constraints and the 
MSE loss terms for the constitutive ODEs is then given by:  

ℒ𝑐𝑐 = 1
𝑛𝑛
∑ �𝑔𝑔�𝝐𝝐, 𝝐̇𝝐, 𝛾𝛾�,𝝈𝝈�, 𝛾𝛾�̇,𝝈𝝈�̇,𝝀𝝀�|𝑡𝑡𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1           𝑡𝑡𝑖𝑖 ∈ [0,𝑇𝑇] (11) 

It is worth noting that the loss terms for the constitutive model include time derivatives (a.k.a. rates) of the neural 
network approximations of 𝛾𝛾�,𝝈𝝈�; these derivatives are computed using the available technology for “automatic 
differentiation” in TensorFlow. 
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The initial conditions for constitutive ODEs for one integration point are written as : 

𝛾𝛾�|𝑡𝑡=0 = 𝛾𝛾0           (12) 

𝝈𝝈� |𝑡𝑡=0 =  𝝈𝝈𝟎𝟎  (13) 

where 𝛾𝛾0 ,𝝈𝝈𝟎𝟎  are the initial condition for the plastic multiplier and stress. The loss term associated with initial 
conditions for one integration point are defined as: 

ℒ𝛾𝛾0 = 𝛾𝛾�|𝑡𝑡=0 − 𝛾𝛾0       (14) 

ℒ𝝈𝝈𝟎𝟎0 = 𝝈𝝈�|𝑡𝑡=0 − 𝝈𝝈𝟎𝟎       (15) 

Finally, the total loss is the summation of two equilibrium loss terms (9, 10), constitutive loss terms (11) and initial 
value loss terms (14, 15), summed over all integration points:  

ℒ =  ℒ𝐹𝐹 + ℒ𝑀𝑀 +  � (ℒ𝑐𝑐)𝑚𝑚 
𝑀𝑀

𝑚𝑚=1

+ (ℒ𝛾𝛾0)𝑚𝑚 + (ℒ𝝈𝝈𝟎𝟎0)𝑚𝑚  (16) 

where M is the total number of integration points in the spatial domain. 
After construction of the network, it should be trained using data. The data needed for training of this network 
include time history of force 𝐹𝐹, time history of strain in the domain, 𝑥𝑥 coordinates of the integration points and 
initial values of the stress field and plastic multiplier. The network is then trained on these sets of data by 
minimizing the total loss with respect to the network parameters 𝜽𝜽,𝝀𝝀 : 

(𝜽𝜽𝑜𝑜𝑜𝑜𝑜𝑜 ,𝝀𝝀𝑜𝑜𝑜𝑜𝑜𝑜) = argmin
 𝜽𝜽,𝝀𝝀

ℒ  (17) 

After the training, the plastic multiplier and stress field are approximated, and the material parameters are 
identifed.  
The PINN is encoded in a high-level Keras wrapper called SciANN [17], that is  specifically  developed for physics-
informed deep learning and scientific computations. The adopted neural network has 8 hidden layers and 20 
neurons per layer. A hyperbolic-tangent function is selected as the activation function of the hidden layers due to 
its smoothness and non-zero derivative. A full-batch optimization scheme is used together with Adam optimizer 
[18]. 

3 Case study 

To assess the performance of the proposed framework, it is applied to the characterization of parameters of the 
coupled damage-plasticity model described in Section 2.1. As a validation step, the PINN is first used to determine 
the constitutive model parameters for a single-element setup, as presented in Appendix A. It can be seen from 
Table A.1, that the PINN framework is able to characterize the damage-plasticity parameters quite accurately. This 
instils confidence in applying the developed PINN to a more complex loading geometry. In the following, we 
investigate the application of the PINN  to characterization of the constitutive model parameters of a composite 
specimen subjected to OCT testing.  
To avoid the complexities of dealing with experimental data at this stage, the required data are synthetically 
generated by performing FE simulation of the OCT test on quasi-isotropic IM7/8552 CFRP laminate. The 
constitutive parameters used for performing the FE simulation are  𝐸𝐸 = 60 𝐺𝐺𝐺𝐺𝐺𝐺, 𝜈𝜈 = 0.32,𝜎𝜎𝑖𝑖 = 663, 𝜖𝜖𝑝̅𝑝𝑝𝑝 = 0.29  
that are based on the work by Zobeiry et al. [5]. The data generated by the FE analysis used for training of the 
PINN, are time histories of the applied force (𝐹𝐹) and all strain components in the zone of interest, Ω. For 
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evaluation of the integrals in equilibrium loss terms, a uniform mesh with 46 Gaussian integration points on spatial 
domain along 𝑥𝑥 (as shown in Figure 3) is used.  
To facilitate the inverse analysis, elastic parameters 𝐸𝐸, 𝜈𝜈 are firstly identified by training the PINN using the data at 
early stages of loading when the material behavior is elastic. A total number of 40 datapoints are uniformly 
sampled on 𝑡𝑡 ∈ [0.0 , 1.6] seconds. Training data for identification of the elastic parameters are represented in 
Figure 4.  
 

 
(a) 

 
(b) 

Figure 4. Training data used for identification of the elastic parameters  𝐸𝐸 and 𝜈𝜈 : (a) sampled force vs time (sampled 
datapoints are marked in red), and (b) sampled  strain in the zone of interest  

 
After the elastic parameters are identified, damage parameters 𝜎𝜎𝑖𝑖 , 𝜖𝜖𝑝̅𝑝𝑝𝑝 are characterized by training the PINN on 
the data sampled later in time when nonlinear behavior due to plasticity and damage have likely emerged. A total 
number of 110 datapoints are uniformly sampled on 𝑡𝑡 ∈ [1.6 , 5.9] seconds. Training data for identification of the 
damage parameters are represented in Figure 4.  
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(a) 

 
(b) 

Figure 5. Training data used for identification of the damage parameters 𝜎𝜎𝑖𝑖 and 𝜖𝜖𝑝̅𝑝𝑝𝑝 : (a) sampled force vs time (sampled 
datapoints are marked in red), and (b) sampled strain in the zone of interest  

Results and discussion 
After training the proposed PINN model using the force and strain data, the plastic multiplier and stress field in the 
domain of interest are approximated and the material parameters are identified. The predicted parameters are 
compared to the ground truth values in Table 1. The error for each parameter in this table is calculated as:  

Error =
| PINN Predicted −  Ground truth|

Ground truth
 (18) 

 

Table 1. Characterized parameters based on the OCT test geometry 

 
 
 
 
 
 
 
 
 
 

Parameter PINN Predicted Ground truth Error % 
Elastic modulus, E (GPa) 58 60 3 

Poisson’s ratio, 𝜈𝜈 0.32 0.32 0 

Peak stress, 𝜎𝜎𝑖𝑖 (MPa) 612 663 8 

Damage saturation strain, 𝜖𝜖𝑝̅𝑝𝑝𝑝 0.43  0.29 48 
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The resulting characterized stress-strain curve is plotted and compared to the ground truth stress-strain curve 
used for data generation in Figure 6(a). The fracture energy of the material can be calculated based on the area 
below the stress-strain curve. For the 1 mm finite element mesh size used in this study, this value is 168 kJ/m2.  
From Table 1and Figure 6(a), it can be seen that with the exception of the damage saturation strain, the prediction 
error for all other parameters is relatively small. We speculate that the large error in the damage saturation strain 
is due to the fact that this parameter is less pronounced in the pre-peak data of the force-time curve used as 
training data in this study. To assess this idea, PINN-characterized stress-strain curve is used as input for 
simulation of the OCT test using LS-DYNA and the resulting force-time curve is compared to the corresponding 
training data. Figure 6(b) shows this comparison to be fair for the pre-peak region of the force-time curve. From 
this observation it can be inferred that with the given pre-peak training data, the model performs reasonably well 
and that the error in prediction of the damage saturation strain can be attributed to the absence of training data 
in the post-peak regime of the force-time curve. In fact, in the single element study presented in Appendix A, it is 
shown that when data from the post-peak regime of force-time curve are included in training, the damage 
saturation strain can be accurately predicted. Work is currently underway to incorporate the post-peak training 
data as this requires further modifications to the PINN model to handle the high level of noise that is inherent in 
explicit FE analysis involving fully damaged elements (i.e. elements that have exceeded damage saturation strain). 
 

  
 (a) (b)  

Figure 6. (a) Comparison of PINN characterized stress-strain curve and the ground truth (b) comparison of the force-time 
curves obtained from LS-DYNA based on ground truth and PINN predicted stress-strain curves as input 

4 Conclusion 

We present a physics-informed neural network (PINN) framework for damage characterization of composites. The 
proposed model only uses external force and field strains as training data. Performance of this PINN model has 
been demonstrated for characterization of material parameters of a coupled damage-plasticity constitutive model 
applied to simulation of a quasi-isotropic composite laminate. In this study, data needed for training of the PINN 
are extracted from FE simulations of OCT tests. Currently the PINN model can predict the elastic parameters and 
the peak stress (or damage initiation strain) fairly well, however, it is shown that for accurate prediction of the 
damage saturation strain parameter data from the post-peak regime of the OCT test should be included in the 
training. This regime accompanies sudden fracturing behavior that lead to high level of noise in local strain data. 
Future research efforts will focus on dealing with the nosiy data when postpeak regime is considered for training 
the PINN.  
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Appendix A. Validation of the proposed framework by characterization of  
the constitutive model parameters for a single element setup  

To verify the effectiveness of the PINN predictions for coupled damage-plasticity characterization, we have 
conducted a single element analysis under uniaxial loading that follows the force-time history shown in Figure A.1. 
The generated data including force and strain-time histories were used for training the PINN. The predicted 
damage parameters by the PINN are listed in Table A.1. It can be seen that the PINN framework is able to 
characterize the damage-plasticity parameters for this setup quite accurately. It should be noted that the training 
data were sampled from both pre-peak and post-peak regimes in force-time history but noisy data after damage 
saturation were not included in the training data. 
 

 
Figure A.1. Single element and the training data which includes the post-peak regime used for identification of the damage 

parameters 

 

Table A.1. Characterized parameters based on the single element model where post peak data are used in addition to pre-
peak data for training 

 
 
 
 
 
 
 
 

Parameter PINN Predicted Ground truth Error % 
Elastic modulus, E (GPa) 62 60 3.3 

Poisson’s ratio, 𝜈𝜈 0.32 0.32 0 

Peak stress, 𝜎𝜎𝑖𝑖 (MPa) 640 663 3.5 

Damage saturation strain, 𝜖𝜖𝑝̅𝑝𝑝𝑝 0.29  0.29 0 
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