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ABSTRACT 

Development of thermal management and physics-based process simulation of composites has been well-
established in recent years. However, the heat-transfer coefficients (HTCs) at the air-part and air-tool interfaces 
during autoclave curing, remain a challenge and a major source of uncertainties. Calculation of HTC using physics-
based simulations has often been developed based on simplified 1D models or costly 3D simulation tools such as 
Computational Fluid Dynamics. However, these methods fail to capture the effect of uncertainties in estimating 
these HTC values on the corresponding thermal histories of curing parts. The applicability of statistical inference-
based models to calculate HTC distributions and associated uncertainties have been previously explored using 
synthetic datasets generated from finite element simulations. In this study, the resulting validated model has been 
used on available experimental datasets to determine the most probable HTC distributions with an estimate of 
associated uncertainties. The HTC estimates obtained for two tools with different substructures were compared to 
understand the effect of the interaction of tooling substructure and airflow on the effective HTCs. 
 

1 INTRODUCTION 

Fiber-reinforced composite polymers have become integral in various industries, spanning aerospace to recreational 
technology. The manufacturing of thermoset polymer matrix composites often employs autoclave-based curing 
processes, wherein meticulously laid-up prepreg materials undergo thermal transformation. This transformation, 
crucial for developing the mechanical properties of the composite, is conducted under precisely controlled 
temperature and pressure conditions. Among the pivotal factors influencing this transformation, heat transfer 
coefficients (HTCs) take center stage, emerging as critical parameters that demand precise determination for 
confident and reliable process design workflows. Physics-based process simulation models have been shown to be 
valuable in quickly and efficiently reducing the uncertainties in design practices without the need for repetitive 
experimental runs thus leading to reduced material, labor, and time costs [1][2][3][4]. Particularly as the size and 
intricacy of components escalate, the need for robust process modeling frameworks becomes more pronounced. In 
such process simulation frameworks, the HTCs assume a paramount role as essential boundary condition inputs to 
model the heat transfer phenomenon at the fluid-solid interface. Thus, an accurate knowledge of HTCs is 
indispensable, as it not only facilitates enhanced process simulations but also enhances the design and optimization 
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of cure cycles, which ensures the production of composite parts with the desired mechanical properties. The 
significance of confidently ascertaining HTCs is therefore underscored, forming the cornerstone for the 
development of advanced thermal management strategies in composite manufacturing. However, the 
measurement of HTCs has been associated with several complexities. In a composites manufacturing setup, 
different deterministic methods have been used historically to calculate HTCs ranging from lumped mass 
calculations, which are simplified 1D analyses, to using computationally expensive Computational Fluid Dynamics 
(CFD) for simulating the airflows and associated HTC fields in a 3D model [5][6][7]. However, these are insufficient 
to capture the uncertainties associated with the estimation of HTCs and their corresponding impact on thermal 
predictions. Hence, a statistical inference model based on Bayesian inference has been employed in this work to 
estimate the HTCs along with associated uncertainties in these parameters which can be used to understand the 
consequent effect on thermal history predictions in process simulation models.  

2 METHODS 

2.1 Experiments 

2.1.1 Tooling 

The tools used in this work were made from structural steel and had different substructures as shown in Figure 1. 
For both the tools, the top skin had dimensions of 30cm x 45cm and the substructure had a height of 30cm. The 
thickness of the top skin was 12.7mm and the substructure had a thickness of 9.5mm. The closed substructure tool 
weighed 35.2kg whereas the open substructure tool weighed 30.4kg. 

   
a. b. 

Figure 1. Schematic of the (a) open and (b) closed substructure steel tools used in this work  

Table 1. Material Properties of Steel Tools 

Property Value 

Density (𝜌) 7859 kg/m3 
Specific Heat Capacity (𝐶𝑝) 465 J/kg/K 

Thermal Conductivity (𝑘)  52 W/m/K 
Thermal Diffusivity (𝛼)  1.4x10-5 m2/s 
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2.1.2 Measurement 

To measure the thermal performance of the tools, 28 thermocouples (TCs) were placed at different locations on the 
surface of each of the tools. The locations of TCs numbered 1 till 23 are as shown in Figure 2. TCs 24 till 28 were 
inside of the substructure. The locations of all the TCs are as mentioned in Table 2. Another TC was taped to the 
side face of the top skin with its tip 2 inches away from the tool to measure the air temperature. All the TCs were 
        d      N      l I s  u    s’ d      qu s      (DAQ)   dul , w     w s s   up       d   d w     v lu s at 
a frequency of 0.5 Hz. 

   
a. b. 

Figure 2. Thermocouple locations on the open mould (a) and closed mould (b) tools. At any location x/y denotes TCx is located 
on the visible face and TCy is located on the opposite face not visible on the images 

 

Table 2. Thermocouple locations on the tool 

TC# Location TC# Location TC# Location TC# Location 

1 Top Skin 8 Left Face 15 Right Face 22 Back Face  
2 Top Skin 9 Left Face 16 Front Face 23 Back Face  
3 Top Skin 10 Left Face 17 Front Face 24 Underneath TC5   
4 Top Skin 11 Right Face 18 Front Face 25 Inner surface where TC12 is  
5 Top Skin 12 Right Face 19 Front Face 26 Inner surface where TC7 is  
6 Left Face 13 Right Face 20 Back Face 27 Inner surface where TC17 is  
7 Left Face 14 Right Face 21 Back Face 28 Inner surface where TC21 is  

 

2.1.3 Equipment 

There were two main equipment used in this experiment – a Thermotron oven and an in-house constructed wind 
tunnel. The wind tunnel was constructed using wooden frames, heavy duty tarp and a large drum fan. The wind 
tunnel consisted of three sections – A) a settling chamber of length 0.9m for the airflow to become uniform, B) the 
test section of length 1m where the tool was placed during the experiment, and C) the exhaust chamber of length 
1.8m from where the air leaves the wind tunnel as shown in Figure 3a. The tool was placed on a platform to load it 
into the wind tunnel as shown in Figure 3b. The mount was constructed such that it could be rotated and tilted as 
well as raised or lowered to capture different airflow scenarios. 
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a. b. 

Figure 3. (a) Image of the wind tunnel (b) Open tool mounted on platform 

2.1.4 Process 

The oven was switched on and its set point was set at 130°C. Once the oven reached the required temperature, the 
tool was placed in the oven until all the functioning thermocouples were in the range of 128-130°C. Next, the tool 
was removed from the oven and quickly placed in the wind tunnel with the fan running. The tool was then allowed 
to cool down to ambient temperature and the temperatures were recorded at all the TC locations. The process was 
repeated for both the open and closed mould tools for different airflow conditions by varying the rotation from 0° 
to 45° to 90° and the tilt from 0° to 15°. Thus, a total of 6 different orientations for each tool was possible. In this 
work, the notation RθTφ has been used to denote the airflow condition when the tool was at a rotation θ d     s 
and tilt φ d     s. The 0° rotation corresponds to the front face of the tool being the windward side while the 90° 
rotation corresponds to the right face of the tool as the windward side.  

2.2 Analysis 

2.2.1  Bayesian Inference  

Stochastic methods like Bayesian inference have been used in recent times to estimate parameters like HTCs in a 
variety of thermal management analyses [8][9][10]. Based on Bayes theorem as given by Equation 1, 

𝑝(𝜃|𝑇𝐸) =  
𝑝(𝑇𝐸|𝜃)𝑝(𝜃)

𝑝(𝑇𝐸)
 (1) 

 

 

Where, 𝜃 represents the unknown parameters, in this case HTCs and local air temperatures, 𝑝(𝜃) denotes the prior 
probability density function for the parameters, 𝑇𝐸 denotes the experimentally measured temperature, 𝑝(𝑇𝐸) is a 
proportionality constant such that ∫ 𝑝(𝜃|𝑇𝐸)𝑑𝜃 = 1. 𝑝(𝑇𝐸|𝜃) is hence the likelihood which describes how well the 
observed data can be explained for a given value of the parameters 𝜃. Estimating the terms on the right-hand side 
of the equation, the posterior probability distribution of the parameters 𝜃 can be calculated as 𝑝(𝜃|𝑇𝐸). Assuming 
the likelihood function to be a Gaussian distribution, and using Laplace approximation, the posterior probability 
distribution can be expressed as[10], 

𝑝(𝜃|𝑇𝐸) ≈ 𝒩(𝜃; 𝜃0, −𝐻−1|𝜃=𝜃0
) (2) 

 

 

Where, 𝜃0 is the mode of the posterior probability density and 𝐻 is the Hessian matrix. The covariance matrix of the 
parameters can be calculated by taking the negative of the inverse of the Hessian matrix as obtained in Equation 2. 
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3 RESULTS 

The HTCs estimated at different faces of the tools for the R0T0 airflow condition along with the associated 
uncertainties has been shown in Figure 4. For the closed tool, the HTCs varied between 20 W/m2K to 31 W/m2K with 
a maximum uncertainty of 2 W/m2K. For the open tool, the HTCs varied between 24 W/m2K to 31 W/m2K with a 
maximum uncertainty of 1.8 W/m2K. 
 

  
 

a. b. c. 

Figure 4. (a)Thermal data for open tool (b) Thermal data for closed tool (c) Estimation of HTCs along with associated 
uncertainty for open and closed tool, for R0T0 airflow 

 

   

Figure 5. Box plot showing HTCs for both the tools for different airflow conditions  

The distribution of HTCs for both the open and closed tool obtained for different airflow orientations are shown in 
Figure 5. Comparing across airflow conditions, the closed tool shows higher median HTCs for the 15° tilt cases 
compared to the 0° tilt cases. The open tool, however, does not show much variation for the two tilt cases. For a 
certain tilt, changing the rotation from 0° to 45° to 90°, shows an increase in the median HTCs for the closed tool 
whereas the open tool did not show significant variation for the same comparison. Across all airflow conditions, the 
HTCs were observed to vary between 9 W/m2K to 50 W/m2K. The median values for the HTCs ranged between 26 
W/m2K to 36 W/m2K for the closed tool and 26 W/m2K to 31 W/m2K for the open tool.  
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4 CONCLUSION 

Bayesian inference based stochastic methods are very useful in estimating the HTCs as well as the associated 
uncertainties from experimental data generated in a controlled airflow environment, as demonstrated in this work. 
The HTCs inferred for a range of airflow conditions for both an open and closed substructure tool were observed to 
be in the typical range of HTCs expected in force convection conditions. Thus, using this method for estimating HTCs 
in an autoclave-based curing process can be very useful in understanding the uncertainties associated with 
manufacturing processes, which in turn can be used to improve current process simulation models. 

5 REFERENCES 

[1] A  C  L  s   d G  S  Sp      , “Cu      f Ep xy M    x C  p s   s,” J Compos Mater, vol. 17, no. 2, pp. 135–
169, Mar. 1983, doi: 10.1177/002199838301700204. 

[2] A  A  J   s   , “A           d   d l  f     d v l p      f p    ss-induced deformation in autoclave 
p    ss     f    p s    s  u  u  s,” P D T  s s, T   U  v  s  y  f B    s  C lu b  , V    uv  ,  99   

[3] T  A  B      , J  W  G ll sp  ,   d W  J   , “Cu   s  ul       f     k       s          p s   s,” Report No. 
ADA224885, 1990. 

[4] T  A  B         d J  W  G ll sp   J , “Tw -d    s    l  u   s  ul       f     k       s          p s   s,” J 
Compos Mater, vol. 25, no. 3, pp. 239–273, 1991. 

[5] A  S  w   , J    b  s, C  T  ps   , M  S   d,   d G      lu d, “T     l A  lys s  f H s      l Au   l v  D    
Using Science-B s d D    A  ly   s M    ds,” SAMPE 2020| Virtual Series, 2020. 

[6] A  A  f   , N  Sl s     , T  S    zu,   d A  P u s    p, “HEAT T ANS E  COE  ICIENT DIST IBUTION INSIDE 
AN AUTOCLAVE,”   b     9  A   ss d:   b    ,    4  [O l   ]  Av  l bl : 
https://api.semanticscholar.org/CorpusID:189805077} 

[7] N  G    b   S  z   , “Tu bul       d          sf      su              u   l v    d l,” M s   s T  s s, 
The University of Texas at Arlington, 1990. Accessed: Nov. 26, 2023. [Online]. Available: 
https://www.proquest.com/docview/194067745?pq-
origsite=gscholar&fromopenview=true&sourcetype=Dissertations%20&%20Theses 

[8] A  I  K   , M  M  B ll  , C  Y   , J  L u,   d P  Du   , “B y s    M    d f   P         Es            T   s     
H    T   sf   P  bl  ,” Int J Heat Mass Transf, vol. 166, p. 120746, Feb. 2021, doi: 
10.1016/j.ijheatmasstransfer.2020.120746. 

[9] J  B        d C  L    s, “Su f    T   sf   C  ff      s Es         f   H    C  du      P  bl   Us        
B y s         w  k,” Heat Transfer Engineering, vol. 44, no. 5, pp. 391–410, Mar. 2023, doi: 
10.1080/01457632.2022.2068217. 

[10] K  G  d    , A  B         j  , A  P u s    p,    V z   ,   d T  C  pb ll, “Es          f B u d  y C  d     s, 
Along with Quantification and Propagation of Uncertainty, in Curing Processes of Composites: A Bayesian 
     w  k,” Unpublished work.  

  


