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ABSTRACT 
 
This study discusses a novel manufacturing method that co-cures piezoelectric sensors to the surface of carbon fibre 
reinforced polymer (CFRP) panels, enabling in-situ cure monitoring, manufacturing inspection, and in-service 
monitoring. The CFRP panels have been intentionally manufactured with known defects, establishing a reference 
point for subsequent detection and identification analyses. Using Lamb waves processed with the continuous 
wavelet transform to perform a time-frequency domain analysis, the ability to recognize and identify delamination, 
porosity, and foreign object defects was demonstrated. Furthermore, this study extends beyond the traditional 
analysis of waveforms and employs neural networks to enhance the predictive capabilities for real-time damage 
assessment. By training the neural network on the acquired signals from the piezoelectric sensors, the objective is 
to develop a robust predictive model capable of reliably identifying and classifying the various defects present within 
the panels. 

1 INTRODUCTION 
Carbon fibre reinforced polymers (CFRP) are a composite material made with carbon fibers embedded in a polymer. 
Since the 1980’s, CFRP’s have become integral to aircraft construction due to their strength and lightweight 
properties. Despite their benefits, there is a limited understanding of their failure modes in comparison to more 
traditional materials. Due to the uncertainty surrounding the failure mechanisms of CFRP, aircraft are subject to 
extensive non-destructive examinations (NDE) to comply with airworthiness standards. NDE have a significant 
impact on maintenance budgets and schedules since they result in aircraft being decommissioned for a period of 
hours to weeks. 
 
To mitigate these challenges, Structural Health Monitoring (SHM) as part of an integrated vehicle health 
management (IVHM) philosophy offers a proactive approach to managing the health of CFRP composites in aircraft. 
SHM systems continuously monitor and analyze the integrity of aircraft structures in real-time, identifying potential 
damages before they become critical. This methodology will not only enhances safety through early detection of 
structural problems but also streamlines maintenance procedures. By pinpointing exactly when and where repairs 
are needed, SHM reduces unnecessary downtime and decreases the costs associated with NDE and aircraft being 
removed from service.  
 
 One technique used in SHM systems is Lamb waves. These guided ultrasonic waves can be used to detect and 
characterize defects in materials, by propagating along the surface of a material. Unlike some other ultrasonic 
techniques, Lamb waves can cover large areas from a single point of excitation [1]. The waves are sensitive to 
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alterations in the material properties caused by defects like cracks and delamination. By generating Lamb waves at 
a specific point on a structure and observing how they propagate and alter across different locations, individuals 
can assess the structure and identify abnormalities. Currently, analyzing these signals is typically a manual process 
that could benefit from automation. The integration of neural networks into this process could significantly enhance 
the efficiency and accuracy of analyzing Lamb wave data. Neural networks could be trained to automatically 
recognize patterns and anomalies in the wave signals to produce near real-time monitoring. 

2 Previous Work 

Bishop [1], proposed a novel manufacturing method that co-cured piezoelectric sensors to CFRP panels. Panels were 
manufactured with an out-of-autoclave carbon fiber and epoxy prepreg material (AX-6111-C, Axiom Material 
Incorporated). The panels were 500 x 200 x 1.2mm and consisted of 8-plies in a symmetric and quasi-isotropic layup, 
[0/90/+45/-45]s. The panels were intentionally manufactured with known defects to establish a reference point for 
subsequent detection and analysis. Ultrasonic c-scans were performed on the panels to ensure that the panels 
manufactured to have no known defects, could be assumed to have no defects. 

 
Figure 1. CFRP panel with piezoelectric sensors [2]. 

 
Piezoelectric sensors from APC International Limited (model 70-3000 ) were used for the purpose of this research. 
They have a resonance frequency of 2.0 MHz and 312 kHz in the thickness and radial directions. The sensors are 
6.35 mm in diameter and 0.254 mm in thickness. The two sensors were placed 400 mm apart on the surface of the 
CFRP panel (Figure 1), where one sensor emits an ultrasonic signal while the other receives the signal after it has 
traveled though the material being tested. 
 
A Lamb wave signal was generated using a Picoscope function generator (model 3403D). The Lamb waves were 
initiated by a 3-cycle sine wave combined with a Hanning, which was created in MATLAB and uploaded to the 
Picoscope. To activate the piezoelectric sensors, a Krohn-Hote wideband power amplifier (model 7602) amplified 
the signal to +/- 30 V. Figure 2 illustrates this experimental setup. 
 
Additional signal processing was completed using the MATLAB Signal Processing toolbox. The defect identification 
was performed manually. The research presented within this paper continues the work started by Bishop [2] by 
automating the detection of damage from the Lamb waves. 
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Figure 2. Experimental setup to generate and collect Lamb wave signals [2]. 

3 Proposed Methodology 
In this study, software was developed in Python 3.9 to convert input images into greyscale. These transformed 
images, depicted in Figure 3, served as the training and testing data for the autoencoder. The autoencoder model 
consist of 12 layers and was trained with 2000 signal images from undamaged composite panels, and then tested 
on a set of 5 images which includes both undamaged and damages composite panels. The model was only trained 
on damaged panels since [3] produced a sensitivity study showing that the accuracy of the model decreased with 
the addition of damaged images into the training dataset.  

 

Figure 3. Sample of the images used to train the autoencoder. These signals are presumed to represent an 
undamaged composite panel. 

The architecture of the model (Figure 4) includes 8 layers in the encoder section, which are arranges in alternating 
sequences of convolutional layers and max pooling layers. Each convolution later has half the number of filters of 
the processing one. The decoder portion is made up of 4 layers, starting with a flattening layer, followed by 3 dense 
layers. To match the output dimension with those of the input images, the last dense layer was configured to have 
the same dimensions. At the latent representation of the data, it is compressed by a factor of ~4187. 
 
Activation functions are critical parameters in neural networks, serving as transfer functions that enable the network 
to capture complex relationships within the data. In the absence of activation functions, neural networks would 
essentially function as linear regression models limited to simple, one-degree polynomial relationships. For the 
purpose of this research, the rectified linear unit (ReLU) activation function was selected for all layers except the  
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Figure 4. The proposed autoencoder structure. 

output layer. For the output layer, the sigmoid activation function was chosen because it constrains the output 
values between 0 and 1, which is crucial for image reconstruction. 
 
When developing a neural network, the loss function and optimizer must also be considered. Optimizers are used 
to adjust the weights of the model during training based on feedback from the loss function. For the purpose of this 
study, Mean Square Error (MSE) was chosen as the loss function, and the adaptive moment estimation (Adam) [4] 
optimizer was selected to update the weights. To prevent overtraining, an early stopping mechanism was 
implemented to stop training if the loss did no decrease by 0.001 for 3 consecutive epochs. Once satisfied with the 
compression and reconstructive abilities of the autoencoder, the mean absolute error (Si) associated with each 
reconstructed image was calculated using the following: 
 

𝑆𝑖 =  
∑ ∑ |𝑦𝑖𝑗 − 𝑥𝑖𝑗|𝑏

𝑗=1
𝑎
𝑖=1

𝑎𝑏
 (1) 

where a and b is image pixel dimensions, yij is the predicted pixel value, and xij is the true pixel value. The Si is then 
clustered to predict whether an image represents a damaged or undamaged panel. 
 

 

Figure 5. Schematic of the proposed analysis methodology. 
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Table 1 and Figure 5 summarize this process and rectifies the output from the cluster if the cluster was reversed. 
The recreate function represents the autoencoder which generates a reconstructed version of an input image. The 
score function then assesses each image and assigns a numerical value based on the Si. These Si scores are then 
grouped into two categories using the Scikit KMeans clustering algorithm [5], referred to here as the cluster function. 
This clustering process aggregates similar Si values and labels them with either a 0 or 1. To ensure accurate 
identification, the average Si for images labeled as 1 and 0 is calculated. The cluster with the higher average Si is 
considered to contain the defective components under the assumption that a greater error indicates a higher 
likelihood of defects. 
 
To investigate the results of this research, the precision, recall and F1 scores were calculated using the 
corresponding metrics from Scikit [5]. These metrics give insight into the number of true positives, true negatives 
and false positives produced by the model. 

Table 1. Proposed algorithm. 

 

4 Results and Discussion 
Table 2 denotes the proposed autoencoder structure. With a total of thirteen layers, the model has 1,966,894,562 
parameters to train. Beginning with an input layer shape of 332 by 1176, each max pooling layer decreases the size 
by half. The model architecture was determined through trial and error, considering the available computational 
power. The model was trained on a 2021 Apple M1 - Max, 32GB Macbook Pro. The model took 10 epochs to 
converge to a loss of 0.0023 and a validation loss of 0.0065. 

Table 2. Proposed autoencoder architecture. 

Layer type Output shape Number of parameters 

Input layer [332,1176,1] 0 
Convolution layer [332,1176,48] 480 
Max pooling [166,588,48] 0 
Convolution layer [166,588,24] 10,392 
Max pooling [83,294,24] 0 
Convolution layer [83,294,12] 2,604 
Max pooling [42,147,12] 0 
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Convolution layer [42,147,6] 654 
Max pooling [21,74,6] 0 
Flatten [9324] 0 
Dense [1000] 9,325,000 
Dense [5000] 5,005,000 
Dense [390432] 1,952,550,432 

 
The model can accurately reconstruct the undamaged panels but struggled to reconstruct those that are 
damaged. This is the desired behavior that will allow the clustering algorithm to differentiate between defective 
and non-defective panels.  

 

Figure 6. Example of panels which were correctly classified by the proposed method. The numbers “0” and “1” 
represent a non-defective and defective panel respectively. The damaged panel was known to have a 
delamination defect under the second ply. 

The above figure shows two samples that were accurately classified by the proposed method. The model obtained 
a recall, precision and F1 score each of 100% indicating that the model classified the samples correctly.  

5 Conclusions and Future Work 
The findings of this study suggest the possibility of combining piezoelectric embedded sensors and neural networks 
to act as SHM systems on composite aerospace components. Future studies should include generating more data 
to further validate the proposed method. Additionally, another neural network should follow the results of this 
method to differentiate between the different types of damage present within the panels. The images classified as 
defective could then be passed through the same procedure multiple times with different training datasets to 
determine what type of damage is present. 
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